Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Visualization version   GIF version

Theorem stoweidlem46 40581
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1 𝑡𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞𝜑
stoweidlem46.4 𝑡𝜑
stoweidlem46.5 𝐾 = (topGen‘ran (,))
stoweidlem46.6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem46.7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 (𝜑𝐽 ∈ Comp)
stoweidlem46.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem46.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem46.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem46.15 (𝜑𝑈𝐽)
stoweidlem46.16 (𝜑𝑍𝑈)
stoweidlem46.17 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
stoweidlem46 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑡   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,𝑞,𝑟   𝑍,𝑞,𝑥   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤)   𝑄(𝑥,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem46
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8 𝑞𝜑
2 nfv 1883 . . . . . . . 8 𝑞 𝑠 ∈ (𝑇𝑈)
31, 2nfan 1868 . . . . . . 7 𝑞(𝜑𝑠 ∈ (𝑇𝑈))
4 stoweidlem46.4 . . . . . . . 8 𝑡𝜑
5 nfcv 2793 . . . . . . . . . 10 𝑡𝑇
6 stoweidlem46.1 . . . . . . . . . 10 𝑡𝑈
75, 6nfdif 3764 . . . . . . . . 9 𝑡(𝑇𝑈)
87nfel2 2810 . . . . . . . 8 𝑡 𝑠 ∈ (𝑇𝑈)
94, 8nfan 1868 . . . . . . 7 𝑡(𝜑𝑠 ∈ (𝑇𝑈))
10 stoweidlem46.2 . . . . . . 7 𝑄
11 stoweidlem46.5 . . . . . . 7 𝐾 = (topGen‘ran (,))
12 stoweidlem46.6 . . . . . . 7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
13 stoweidlem46.8 . . . . . . 7 𝑇 = 𝐽
14 stoweidlem46.9 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
1514adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐽 ∈ Comp)
16 stoweidlem46.10 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1716adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
18 stoweidlem46.11 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
19183adant1r 1359 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
20 stoweidlem46.12 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21203adant1r 1359 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
22 stoweidlem46.13 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322adantlr 751 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 stoweidlem46.14 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2524adantlr 751 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
26 stoweidlem46.15 . . . . . . . 8 (𝜑𝑈𝐽)
2726adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑈𝐽)
28 stoweidlem46.16 . . . . . . . 8 (𝜑𝑍𝑈)
2928adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑍𝑈)
30 simpr 476 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 ∈ (𝑇𝑈))
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 40578 . . . . . 6 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃(𝑄 ∧ 0 < (𝑠)))
32 nfv 1883 . . . . . . 7 𝑔(𝑄 ∧ 0 < (𝑠))
3310nfel2 2810 . . . . . . . 8 𝑔𝑄
34 nfv 1883 . . . . . . . 8 0 < (𝑔𝑠)
3533, 34nfan 1868 . . . . . . 7 (𝑔𝑄 ∧ 0 < (𝑔𝑠))
36 eleq1 2718 . . . . . . . 8 ( = 𝑔 → (𝑄𝑔𝑄))
37 fveq1 6228 . . . . . . . . 9 ( = 𝑔 → (𝑠) = (𝑔𝑠))
3837breq2d 4697 . . . . . . . 8 ( = 𝑔 → (0 < (𝑠) ↔ 0 < (𝑔𝑠)))
3936, 38anbi12d 747 . . . . . . 7 ( = 𝑔 → ((𝑄 ∧ 0 < (𝑠)) ↔ (𝑔𝑄 ∧ 0 < (𝑔𝑠))))
4032, 35, 39cbvex 2308 . . . . . 6 (∃(𝑄 ∧ 0 < (𝑠)) ↔ ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
4131, 40sylib 208 . . . . 5 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
42 stoweidlem46.17 . . . . . . . 8 (𝜑𝑇 ∈ V)
43 rabexg 4844 . . . . . . . 8 (𝑇 ∈ V → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4442, 43syl 17 . . . . . . 7 (𝜑 → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4544ad2antrr 762 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
46 eldifi 3765 . . . . . . . 8 (𝑠 ∈ (𝑇𝑈) → 𝑠𝑇)
4746ad2antlr 763 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠𝑇)
48 simprr 811 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 0 < (𝑔𝑠))
49 fveq2 6229 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑔𝑡) = (𝑔𝑠))
5049breq2d 4697 . . . . . . . 8 (𝑡 = 𝑠 → (0 < (𝑔𝑡) ↔ 0 < (𝑔𝑠)))
5150elrab 3396 . . . . . . 7 (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ↔ (𝑠𝑇 ∧ 0 < (𝑔𝑠)))
5247, 48, 51sylanbrc 699 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
53 simpll 805 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝜑)
5416adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝐴 ⊆ (𝐽 Cn 𝐾))
55 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑔𝑄) → 𝑔𝑄)
5655, 12syl6eleq 2740 . . . . . . . . . . . . 13 ((𝜑𝑔𝑄) → 𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
57 fveq1 6228 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑍) = (𝑔𝑍))
5857eqeq1d 2653 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((𝑍) = 0 ↔ (𝑔𝑍) = 0))
59 fveq1 6228 . . . . . . . . . . . . . . . . . 18 ( = 𝑔 → (𝑡) = (𝑔𝑡))
6059breq2d 4697 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
6159breq1d 4695 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
6260, 61anbi12d 747 . . . . . . . . . . . . . . . 16 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6362ralbidv 3015 . . . . . . . . . . . . . . 15 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6458, 63anbi12d 747 . . . . . . . . . . . . . 14 ( = 𝑔 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6564elrab 3396 . . . . . . . . . . . . 13 (𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6656, 65sylib 208 . . . . . . . . . . . 12 ((𝜑𝑔𝑄) → (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6766simpld 474 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝑔𝐴)
6854, 67sseldd 3637 . . . . . . . . . 10 ((𝜑𝑔𝑄) → 𝑔 ∈ (𝐽 Cn 𝐾))
6968ad2ant2r 798 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑔 ∈ (𝐽 Cn 𝐾))
70 nfcv 2793 . . . . . . . . . 10 𝑡0
71 nfcv 2793 . . . . . . . . . 10 𝑡𝑔
72 nfv 1883 . . . . . . . . . . 11 𝑡 𝑔 ∈ (𝐽 Cn 𝐾)
734, 72nfan 1868 . . . . . . . . . 10 𝑡(𝜑𝑔 ∈ (𝐽 Cn 𝐾))
74 eqid 2651 . . . . . . . . . 10 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
75 0xr 10124 . . . . . . . . . . 11 0 ∈ ℝ*
7675a1i 11 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 0 ∈ ℝ*)
77 simpr 476 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 𝑔 ∈ (𝐽 Cn 𝐾))
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 39492 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
7953, 69, 78syl2anc 694 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
80 eqidd 2652 . . . . . . . . . 10 ((𝜑𝑔𝑄) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
81 nfv 1883 . . . . . . . . . . 11 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
82 nfcv 2793 . . . . . . . . . . 11 𝑔
8359breq2d 4697 . . . . . . . . . . . . 13 ( = 𝑔 → (0 < (𝑡) ↔ 0 < (𝑔𝑡)))
8483rabbidv 3220 . . . . . . . . . . . 12 ( = 𝑔 → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
8584eqeq2d 2661 . . . . . . . . . . 11 ( = 𝑔 → ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
8681, 82, 10, 85rspcegf 39496 . . . . . . . . . 10 ((𝑔𝑄 ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8755, 80, 86syl2anc 694 . . . . . . . . 9 ((𝜑𝑔𝑄) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8887ad2ant2r 798 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
89 eqeq1 2655 . . . . . . . . . 10 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9089rexbidv 3081 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9190elrab 3396 . . . . . . . 8 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽 ∧ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9279, 88, 91sylanbrc 699 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
93 stoweidlem46.7 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9492, 93syl6eleqr 2741 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
95 nfcv 2793 . . . . . . . 8 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)}
96 nfv 1883 . . . . . . . . 9 𝑤 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
97 nfrab1 3152 . . . . . . . . . . 11 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9893, 97nfcxfr 2791 . . . . . . . . . 10 𝑤𝑊
9998nfel2 2810 . . . . . . . . 9 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊
10096, 99nfan 1868 . . . . . . . 8 𝑤(𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
101 eleq2 2719 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑠𝑤𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
102 eleq1 2718 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤𝑊 ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊))
103101, 102anbi12d 747 . . . . . . . 8 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → ((𝑠𝑤𝑤𝑊) ↔ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)))
10495, 100, 103spcegf 3320 . . . . . . 7 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V → ((𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊) → ∃𝑤(𝑠𝑤𝑤𝑊)))
105104imp 444 . . . . . 6 (({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V ∧ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)) → ∃𝑤(𝑠𝑤𝑤𝑊))
10645, 52, 94, 105syl12anc 1364 . . . . 5 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑤(𝑠𝑤𝑤𝑊))
10741, 106exlimddv 1903 . . . 4 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑤(𝑠𝑤𝑤𝑊))
108 nfcv 2793 . . . . 5 𝑤𝑠
109108, 98elunif 39489 . . . 4 (𝑠 𝑊 ↔ ∃𝑤(𝑠𝑤𝑤𝑊))
110107, 109sylibr 224 . . 3 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 𝑊)
111110ex 449 . 2 (𝜑 → (𝑠 ∈ (𝑇𝑈) → 𝑠 𝑊))
112111ssrdv 3642 1 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  wss 3607   cuni 4468   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  topGenctg 16145   Cn ccn 21076  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174
This theorem is referenced by:  stoweidlem50  40585
  Copyright terms: Public domain W3C validator