Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   GIF version

Theorem stoweidlem38 40758
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem38.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem38.3 (𝜑𝑀 ∈ ℕ)
stoweidlem38.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem38.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem38 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21nnrecred 11258 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
32adantr 472 . . . 4 ((𝜑𝑆𝑇) → (1 / 𝑀) ∈ ℝ)
4 fzfid 12966 . . . . 5 ((𝜑𝑆𝑇) → (1...𝑀) ∈ Fin)
5 stoweidlem38.1 . . . . . . . 8 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
6 stoweidlem38.4 . . . . . . . 8 (𝜑𝐺:(1...𝑀)⟶𝑄)
7 stoweidlem38.5 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
85, 6, 7stoweidlem15 40735 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑆) ∧ ((𝐺𝑖)‘𝑆) ≤ 1))
98simp1d 1137 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
109an32s 881 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
114, 10fsumrecl 14664 . . . 4 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ)
12 1red 10247 . . . . . 6 (𝜑 → 1 ∈ ℝ)
13 0le1 10743 . . . . . . 7 0 ≤ 1
1413a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
151nnred 11227 . . . . . 6 (𝜑𝑀 ∈ ℝ)
161nngt0d 11256 . . . . . 6 (𝜑 → 0 < 𝑀)
17 divge0 11084 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (1 / 𝑀))
1812, 14, 15, 16, 17syl22anc 1478 . . . . 5 (𝜑 → 0 ≤ (1 / 𝑀))
1918adantr 472 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ (1 / 𝑀))
208simp2d 1138 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝑖)‘𝑆))
2120an32s 881 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐺𝑖)‘𝑆))
224, 10, 21fsumge0 14726 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
233, 11, 19, 22mulge0d 10796 . . 3 ((𝜑𝑆𝑇) → 0 ≤ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
24 stoweidlem38.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
255, 24, 1, 6, 7stoweidlem30 40750 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
2623, 25breqtrrd 4832 . 2 ((𝜑𝑆𝑇) → 0 ≤ (𝑃𝑆))
27 1red 10247 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 1 ∈ ℝ)
288simp3d 1139 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ≤ 1)
2928an32s 881 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ≤ 1)
304, 10, 27, 29fsumle 14730 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ Σ𝑖 ∈ (1...𝑀)1)
31 fzfid 12966 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
32 ax-1cn 10186 . . . . . . . . 9 1 ∈ ℂ
33 fsumconst 14721 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
3431, 32, 33sylancl 697 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
351nnnn0d 11543 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
36 hashfz1 13328 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3837oveq1d 6828 . . . . . . . 8 (𝜑 → ((♯‘(1...𝑀)) · 1) = (𝑀 · 1))
391nncnd 11228 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4039mulid1d 10249 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
4134, 38, 403eqtrd 2798 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4241adantr 472 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4330, 42breqtrd 4830 . . . . 5 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀)
4415adantr 472 . . . . . 6 ((𝜑𝑆𝑇) → 𝑀 ∈ ℝ)
45 1red 10247 . . . . . . 7 ((𝜑𝑆𝑇) → 1 ∈ ℝ)
46 0lt1 10742 . . . . . . . 8 0 < 1
4746a1i 11 . . . . . . 7 ((𝜑𝑆𝑇) → 0 < 1)
4815, 16jca 555 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
4948adantr 472 . . . . . . 7 ((𝜑𝑆𝑇) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
50 divgt0 11083 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 < (1 / 𝑀))
5145, 47, 49, 50syl21anc 1476 . . . . . 6 ((𝜑𝑆𝑇) → 0 < (1 / 𝑀))
52 lemul2 11068 . . . . . 6 ((Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((1 / 𝑀) ∈ ℝ ∧ 0 < (1 / 𝑀))) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5311, 44, 3, 51, 52syl112anc 1481 . . . . 5 ((𝜑𝑆𝑇) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5443, 53mpbid 222 . . . 4 ((𝜑𝑆𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀))
5525, 54eqbrtrd 4826 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ ((1 / 𝑀) · 𝑀))
5632a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
571nnne0d 11257 . . . . . 6 (𝜑𝑀 ≠ 0)
5856, 39, 573jca 1123 . . . . 5 (𝜑 → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
5958adantr 472 . . . 4 ((𝜑𝑆𝑇) → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
60 divcan1 10886 . . . 4 ((1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((1 / 𝑀) · 𝑀) = 1)
6159, 60syl 17 . . 3 ((𝜑𝑆𝑇) → ((1 / 𝑀) · 𝑀) = 1)
6255, 61breqtrd 4830 . 2 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ 1)
6326, 62jca 555 1 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  Fincfn 8121  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133   < clt 10266  cle 10267   / cdiv 10876  cn 11212  0cn0 11484  ...cfz 12519  chash 13311  Σcsu 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616
This theorem is referenced by:  stoweidlem44  40764
  Copyright terms: Public domain W3C validator