Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   GIF version

Theorem stoweidlem32 40766
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1 𝑡𝜑
stoweidlem32.2 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem32.3 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem32.4 𝐻 = (𝑡𝑇𝑌)
stoweidlem32.5 (𝜑𝑀 ∈ ℕ)
stoweidlem32.6 (𝜑𝑌 ∈ ℝ)
stoweidlem32.7 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem32.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem32.11 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem32 (𝜑𝑃𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑔,𝐻   𝑖,𝑀,𝑡   𝑡,𝑌,𝑥   𝑥,𝑇   𝑥,𝐴   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑃(𝑥,𝑡,𝑓,𝑔,𝑖)   𝐹(𝑥,𝑡,𝑖)   𝐺(𝑥)   𝐻(𝑥,𝑡,𝑓,𝑖)   𝑀(𝑥,𝑓,𝑔)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem32
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
2 stoweidlem32.1 . . . 4 𝑡𝜑
3 stoweidlem32.3 . . . . . . . . . . 11 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 fveq2 6332 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
54sumeq2sdv 14643 . . . . . . . . . . . 12 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
65cbvmptv 4884 . . . . . . . . . . 11 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
73, 6eqtri 2793 . . . . . . . . . 10 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
87a1i 11 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
9 fveq2 6332 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑡))
109sumeq2sdv 14643 . . . . . . . . . 10 (𝑠 = 𝑡 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
1110adantl 467 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑠 = 𝑡) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
12 simpr 471 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
13 fzfid 12980 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
14 simpl 468 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
15 stoweidlem32.7 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
1615ffvelrnda 6502 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
17 eleq1 2838 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
1817anbi2d 614 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
19 feq1 6166 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
2018, 19imbi12d 333 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
21 stoweidlem32.11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2220, 21vtoclg 3417 . . . . . . . . . . . . . 14 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2316, 22syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2414, 16, 23mp2and 679 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
2524adantlr 694 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
26 simplr 752 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
2725, 26ffvelrnd 6503 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
2813, 27fsumrecl 14673 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
298, 11, 12, 28fvmptd 6430 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
3029, 28eqeltrd 2850 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3130recnd 10270 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
32 stoweidlem32.4 . . . . . . . . . . 11 𝐻 = (𝑡𝑇𝑌)
33 eqidd 2772 . . . . . . . . . . . 12 (𝑠 = 𝑡𝑌 = 𝑌)
3433cbvmptv 4884 . . . . . . . . . . 11 (𝑠𝑇𝑌) = (𝑡𝑇𝑌)
3532, 34eqtr4i 2796 . . . . . . . . . 10 𝐻 = (𝑠𝑇𝑌)
3635a1i 11 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐻 = (𝑠𝑇𝑌))
37 eqidd 2772 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑠 = 𝑡) → 𝑌 = 𝑌)
38 stoweidlem32.6 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3938adantr 466 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑌 ∈ ℝ)
4036, 37, 12, 39fvmptd 6430 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = 𝑌)
4140, 39eqeltrd 2850 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
4241recnd 10270 . . . . . 6 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
4331, 42mulcomd 10263 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐻𝑡)) = ((𝐻𝑡) · (𝐹𝑡)))
4440, 29oveq12d 6811 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) · (𝐹𝑡)) = (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4543, 44eqtr2d 2806 . . . 4 ((𝜑𝑡𝑇) → (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((𝐹𝑡) · (𝐻𝑡)))
462, 45mpteq2da 4877 . . 3 (𝜑 → (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
471, 46syl5eq 2817 . 2 (𝜑𝑃 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
48 stoweidlem32.5 . . . 4 (𝜑𝑀 ∈ ℕ)
49 stoweidlem32.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
502, 3, 48, 15, 49, 21stoweidlem20 40754 . . 3 (𝜑𝐹𝐴)
51 stoweidlem32.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
5251stoweidlem4 40738 . . . . 5 ((𝜑𝑌 ∈ ℝ) → (𝑡𝑇𝑌) ∈ 𝐴)
5338, 52mpdan 667 . . . 4 (𝜑 → (𝑡𝑇𝑌) ∈ 𝐴)
5432, 53syl5eqel 2854 . . 3 (𝜑𝐻𝐴)
55 nfmpt1 4881 . . . . . 6 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
563, 55nfcxfr 2911 . . . . 5 𝑡𝐹
5756nfeq2 2929 . . . 4 𝑡 𝑓 = 𝐹
58 nfmpt1 4881 . . . . . 6 𝑡(𝑡𝑇𝑌)
5932, 58nfcxfr 2911 . . . . 5 𝑡𝐻
6059nfeq2 2929 . . . 4 𝑡 𝑔 = 𝐻
61 stoweidlem32.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6257, 60, 61stoweidlem6 40740 . . 3 ((𝜑𝐹𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6350, 54, 62mpd3an23 1574 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6447, 63eqeltrd 2850 1 (𝜑𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wnf 1856  wcel 2145  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cr 10137  1c1 10139   + caddc 10141   · cmul 10143  cn 11222  ...cfz 12533  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by:  stoweidlem44  40778
  Copyright terms: Public domain W3C validator