Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem25 Structured version   Visualization version   GIF version

Theorem stoweidlem25 40764
 Description: This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇 ∖ 𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem25.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem25.2 (𝜑𝑁 ∈ ℕ)
stoweidlem25.3 (𝜑𝐾 ∈ ℕ)
stoweidlem25.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem25.6 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem25.7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem25.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem25.9 (𝜑𝐸 ∈ ℝ+)
stoweidlem25.11 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem25 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝑈(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem25
StepHypRef Expression
1 eldifi 3876 . . 3 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
2 stoweidlem25.1 . . . . 5 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3 stoweidlem25.6 . . . . 5 (𝜑𝑃:𝑇⟶ℝ)
4 stoweidlem25.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11564 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 stoweidlem25.3 . . . . . 6 (𝜑𝐾 ∈ ℕ)
76nnnn0d 11564 . . . . 5 (𝜑𝐾 ∈ ℕ0)
82, 3, 5, 7stoweidlem12 40751 . . . 4 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
9 1red 10268 . . . . . 6 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
103ffvelrnda 6524 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
115adantr 472 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
1210, 11reexpcld 13240 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
139, 12resubcld 10671 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
146, 5nnexpcld 13245 . . . . . . 7 (𝜑 → (𝐾𝑁) ∈ ℕ)
1514nnnn0d 11564 . . . . . 6 (𝜑 → (𝐾𝑁) ∈ ℕ0)
1615adantr 472 . . . . 5 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
1713, 16reexpcld 13240 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
188, 17eqeltrd 2840 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) ∈ ℝ)
191, 18sylan2 492 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ∈ ℝ)
206nnred 11248 . . . . . 6 (𝜑𝐾 ∈ ℝ)
21 stoweidlem25.4 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
2221rpred 12086 . . . . . 6 (𝜑𝐷 ∈ ℝ)
2320, 22remulcld 10283 . . . . 5 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
2423, 5reexpcld 13240 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ)
256nncnd 11249 . . . . . 6 (𝜑𝐾 ∈ ℂ)
266nnne0d 11278 . . . . . 6 (𝜑𝐾 ≠ 0)
2721rpcnne0d 12095 . . . . . 6 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 mulne0 10882 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0)
2925, 26, 27, 28syl21anc 1476 . . . . 5 (𝜑 → (𝐾 · 𝐷) ≠ 0)
3021rpcnd 12088 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3125, 30mulcld 10273 . . . . . 6 (𝜑 → (𝐾 · 𝐷) ∈ ℂ)
32 expne0 13106 . . . . . 6 (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3331, 4, 32syl2anc 696 . . . . 5 (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3429, 33mpbird 247 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0)
3524, 34rereccld 11065 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
3635adantr 472 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
37 stoweidlem25.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
3837rpred 12086 . . 3 (𝜑𝐸 ∈ ℝ)
3938adantr 472 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
401, 8sylan2 492 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
414adantr 472 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑁 ∈ ℕ)
426adantr 472 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐾 ∈ ℕ)
4321adantr 472 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ+)
443adantr 472 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
451adantl 473 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡𝑇)
4644, 45ffvelrnd 6525 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ)
47 0red 10254 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ∈ ℝ)
4822adantr 472 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ)
4921rpgt0d 12089 . . . . . . 7 (𝜑 → 0 < 𝐷)
5049adantr 472 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < 𝐷)
51 stoweidlem25.8 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5251r19.21bi 3071 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ≤ (𝑃𝑡))
5347, 48, 46, 50, 52ltletrd 10410 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
5446, 53elrpd 12083 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ+)
55 stoweidlem25.7 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5655adantr 472 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
57 rsp 3068 . . . . . 6 (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
5856, 45, 57sylc 65 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5958simpld 477 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ≤ (𝑃𝑡))
6058simprd 482 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ≤ 1)
6141, 42, 43, 54, 59, 60, 52stoweidlem1 40740 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
6240, 61eqbrtrd 4827 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
63 stoweidlem25.11 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6463adantr 472 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6519, 36, 39, 62, 64lelttrd 10408 1 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ≠ wne 2933  ∀wral 3051   ∖ cdif 3713   class class class wbr 4805   ↦ cmpt 4882  ⟶wf 6046  ‘cfv 6050  (class class class)co 6815  ℂcc 10147  ℝcr 10148  0cc0 10149  1c1 10150   · cmul 10154   < clt 10287   ≤ cle 10288   − cmin 10479   / cdiv 10897  ℕcn 11233  ℕ0cn0 11505  ℝ+crp 12046  ↑cexp 13075 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-seq 13017  df-exp 13076 This theorem is referenced by:  stoweidlem45  40784
 Copyright terms: Public domain W3C validator