Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Visualization version   GIF version

Theorem stoweidlem13 40733
Description: Lemma for stoweid 40783. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1 (𝜑𝐸 ∈ ℝ+)
stoweidlem13.2 (𝜑𝑋 ∈ ℝ)
stoweidlem13.3 (𝜑𝑌 ∈ ℝ)
stoweidlem13.4 (𝜑𝑗 ∈ ℝ)
stoweidlem13.5 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
stoweidlem13.6 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
stoweidlem13.7 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
stoweidlem13.8 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
Assertion
Ref Expression
stoweidlem13 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4 (𝜑𝑌 ∈ ℝ)
2 stoweidlem13.2 . . . 4 (𝜑𝑋 ∈ ℝ)
31, 2resubcld 10650 . . 3 (𝜑 → (𝑌𝑋) ∈ ℝ)
4 2re 11282 . . . 4 2 ∈ ℝ
5 stoweidlem13.1 . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 12065 . . . 4 (𝜑𝐸 ∈ ℝ)
7 remulcl 10213 . . . 4 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (2 · 𝐸) ∈ ℝ)
84, 6, 7sylancr 698 . . 3 (𝜑 → (2 · 𝐸) ∈ ℝ)
91recnd 10260 . . . . 5 (𝜑𝑌 ∈ ℂ)
102recnd 10260 . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10negsubdi2d 10600 . . . 4 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
122, 1resubcld 10650 . . . . 5 (𝜑 → (𝑋𝑌) ∈ ℝ)
13 1red 10247 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1413, 6remulcld 10262 . . . . 5 (𝜑 → (1 · 𝐸) ∈ ℝ)
15 stoweidlem13.4 . . . . . . . . . . 11 (𝜑𝑗 ∈ ℝ)
16 3re 11286 . . . . . . . . . . . . 13 3 ∈ ℝ
17 3ne0 11307 . . . . . . . . . . . . 13 3 ≠ 0
1816, 17rereccli 10982 . . . . . . . . . . . 12 (1 / 3) ∈ ℝ
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 3) ∈ ℝ)
2015, 19resubcld 10650 . . . . . . . . . 10 (𝜑 → (𝑗 − (1 / 3)) ∈ ℝ)
2120, 6remulcld 10262 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
2221, 1resubcld 10650 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ)
23 4re 11289 . . . . . . . . . . . . 13 4 ∈ ℝ
2423, 16, 173pm3.2i 1424 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
25 redivcl 10936 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈ ℝ)
2624, 25mp1i 13 . . . . . . . . . . 11 (𝜑 → (4 / 3) ∈ ℝ)
2715, 26resubcld 10650 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) ∈ ℝ)
2827, 6remulcld 10262 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
2921, 28resubcld 10650 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ)
30 stoweidlem13.6 . . . . . . . . 9 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
312, 21, 1, 30lesub1dd 10835 . . . . . . . 8 (𝜑 → (𝑋𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌))
32 stoweidlem13.7 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
3328, 1, 21, 32ltsub2dd 10832 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3412, 22, 29, 31, 33lelttrd 10387 . . . . . . 7 (𝜑 → (𝑋𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3515recnd 10260 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
3619recnd 10260 . . . . . . . . . 10 (𝜑 → (1 / 3) ∈ ℂ)
3735, 36subcld 10584 . . . . . . . . 9 (𝜑 → (𝑗 − (1 / 3)) ∈ ℂ)
3826recnd 10260 . . . . . . . . . 10 (𝜑 → (4 / 3) ∈ ℂ)
3935, 38subcld 10584 . . . . . . . . 9 (𝜑 → (𝑗 − (4 / 3)) ∈ ℂ)
406recnd 10260 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
4137, 39, 40subdird 10679 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
4235, 36, 35, 38sub4d 10633 . . . . . . . . . 10 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) − ((1 / 3) − (4 / 3))))
4335, 35subcld 10584 . . . . . . . . . . 11 (𝜑 → (𝑗𝑗) ∈ ℂ)
4443, 36, 38subsub2d 10613 . . . . . . . . . 10 (𝜑 → ((𝑗𝑗) − ((1 / 3) − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4542, 44eqtrd 2794 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4645oveq1d 6828 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4741, 46eqtr3d 2796 . . . . . . 7 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4834, 47breqtrd 4830 . . . . . 6 (𝜑 → (𝑋𝑌) < (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4935subidd 10572 . . . . . . . . 9 (𝜑 → (𝑗𝑗) = 0)
5049oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 / 3) − (1 / 3))))
51 4cn 11290 . . . . . . . . . . . 12 4 ∈ ℂ
52 3cn 11287 . . . . . . . . . . . 12 3 ∈ ℂ
5351, 52, 17divcli 10959 . . . . . . . . . . 11 (4 / 3) ∈ ℂ
54 ax-1cn 10186 . . . . . . . . . . . 12 1 ∈ ℂ
5554, 52, 17divcli 10959 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
56 1div1e1 10909 . . . . . . . . . . . . . 14 (1 / 1) = 1
5756oveq2i 6824 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = ((1 / 3) + 1)
58 ax-1ne0 10197 . . . . . . . . . . . . . 14 1 ≠ 0
5954, 52, 54, 54, 17, 58divadddivi 10979 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 · 1))
6057, 59eqtr3i 2784 . . . . . . . . . . . 12 ((1 / 3) + 1) = (((1 · 1) + (1 · 3)) / (3 · 1))
6152, 54addcomi 10419 . . . . . . . . . . . . . 14 (3 + 1) = (1 + 3)
62 df-4 11273 . . . . . . . . . . . . . 14 4 = (3 + 1)
63 1t1e1 11367 . . . . . . . . . . . . . . 15 (1 · 1) = 1
6452mulid2i 10235 . . . . . . . . . . . . . . 15 (1 · 3) = 3
6563, 64oveq12i 6825 . . . . . . . . . . . . . 14 ((1 · 1) + (1 · 3)) = (1 + 3)
6661, 62, 653eqtr4ri 2793 . . . . . . . . . . . . 13 ((1 · 1) + (1 · 3)) = 4
6766oveq1i 6823 . . . . . . . . . . . 12 (((1 · 1) + (1 · 3)) / (3 · 1)) = (4 / (3 · 1))
68 3t1e3 11370 . . . . . . . . . . . . 13 (3 · 1) = 3
6968oveq2i 6824 . . . . . . . . . . . 12 (4 / (3 · 1)) = (4 / 3)
7060, 67, 693eqtri 2786 . . . . . . . . . . 11 ((1 / 3) + 1) = (4 / 3)
7153, 55, 54, 70subaddrii 10562 . . . . . . . . . 10 ((4 / 3) − (1 / 3)) = 1
7271oveq2i 6824 . . . . . . . . 9 (0 + ((4 / 3) − (1 / 3))) = (0 + 1)
73 1e0p1 11744 . . . . . . . . 9 1 = (0 + 1)
7472, 73eqtr4i 2785 . . . . . . . 8 (0 + ((4 / 3) − (1 / 3))) = 1
7550, 74syl6eq 2810 . . . . . . 7 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = 1)
7675oveq1d 6828 . . . . . 6 (𝜑 → (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸))
7748, 76breqtrd 4830 . . . . 5 (𝜑 → (𝑋𝑌) < (1 · 𝐸))
78 1lt2 11386 . . . . . 6 1 < 2
794a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
8013, 79, 5ltmul1d 12106 . . . . . 6 (𝜑 → (1 < 2 ↔ (1 · 𝐸) < (2 · 𝐸)))
8178, 80mpbii 223 . . . . 5 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
8212, 14, 8, 77, 81lttrd 10390 . . . 4 (𝜑 → (𝑋𝑌) < (2 · 𝐸))
8311, 82eqbrtrd 4826 . . 3 (𝜑 → -(𝑌𝑋) < (2 · 𝐸))
843, 8, 83ltnegcon1d 10799 . 2 (𝜑 → -(2 · 𝐸) < (𝑌𝑋))
85 5re 11291 . . . . . 6 5 ∈ ℝ
8685a1i 11 . . . . 5 (𝜑 → 5 ∈ ℝ)
8716a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
8817a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
8986, 87, 88redivcld 11045 . . . 4 (𝜑 → (5 / 3) ∈ ℝ)
9089, 6remulcld 10262 . . 3 (𝜑 → ((5 / 3) · 𝐸) ∈ ℝ)
912renegcld 10649 . . . . 5 (𝜑 → -𝑋 ∈ ℝ)
9215, 19readdcld 10261 . . . . . 6 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
9392, 6remulcld 10262 . . . . 5 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
9428renegcld 10649 . . . . 5 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
95 stoweidlem13.8 . . . . 5 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
96 stoweidlem13.5 . . . . . 6 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
9728, 2ltnegd 10797 . . . . . 6 (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)))
9896, 97mpbid 222 . . . . 5 (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))
991, 91, 93, 94, 95, 98lt2addd 10842 . . . 4 (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)))
1009, 10negsubd 10590 . . . 4 (𝜑 → (𝑌 + -𝑋) = (𝑌𝑋))
10135, 36, 40adddird 10257 . . . . . 6 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸)))
10235, 38negsubd 10590 . . . . . . . . . . 11 (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3)))
103102eqcomd 2766 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3)))
104103oveq1d 6828 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸))
10538negcld 10571 . . . . . . . . . 10 (𝜑 → -(4 / 3) ∈ ℂ)
10635, 105, 40adddird 10257 . . . . . . . . 9 (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)))
10738, 40mulneg1d 10675 . . . . . . . . . 10 (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸))
108107oveq2d 6829 . . . . . . . . 9 (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
109104, 106, 1083eqtrd 2798 . . . . . . . 8 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
110109negeqd 10467 . . . . . . 7 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
11135, 40mulcld 10252 . . . . . . . 8 (𝜑 → (𝑗 · 𝐸) ∈ ℂ)
11238, 40mulcld 10252 . . . . . . . . 9 (𝜑 → ((4 / 3) · 𝐸) ∈ ℂ)
113112negcld 10571 . . . . . . . 8 (𝜑 → -((4 / 3) · 𝐸) ∈ ℂ)
114111, 113negdid 10597 . . . . . . 7 (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)))
115112negnegd 10575 . . . . . . . 8 (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸))
116115oveq2d 6829 . . . . . . 7 (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
117110, 114, 1163eqtrd 2798 . . . . . 6 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
118101, 117oveq12d 6831 . . . . 5 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))))
11936, 40mulcld 10252 . . . . . . . 8 (𝜑 → ((1 / 3) · 𝐸) ∈ ℂ)
120111negcld 10571 . . . . . . . 8 (𝜑 → -(𝑗 · 𝐸) ∈ ℂ)
121111, 119, 120, 112add4d 10456 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
122111negidd 10574 . . . . . . . 8 (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0)
123122oveq1d 6828 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
124119, 112addcld 10251 . . . . . . . 8 (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈ ℂ)
125124addid2d 10429 . . . . . . 7 (𝜑 → (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
126121, 123, 1253eqtrd 2798 . . . . . 6 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12736, 38, 40adddird 10257 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12887recnd 10260 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
12936, 38addcld 10251 . . . . . . . 8 (𝜑 → ((1 / 3) + (4 / 3)) ∈ ℂ)
130128, 36, 38adddid 10256 . . . . . . . . 9 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = ((3 · (1 / 3)) + (3 · (4 / 3))))
13154, 51addcomi 10419 . . . . . . . . . 10 (1 + 4) = (4 + 1)
13254, 52, 17divcan2i 10960 . . . . . . . . . . 11 (3 · (1 / 3)) = 1
13351, 52, 17divcan2i 10960 . . . . . . . . . . 11 (3 · (4 / 3)) = 4
134132, 133oveq12i 6825 . . . . . . . . . 10 ((3 · (1 / 3)) + (3 · (4 / 3))) = (1 + 4)
135 df-5 11274 . . . . . . . . . 10 5 = (4 + 1)
136131, 134, 1353eqtr4i 2792 . . . . . . . . 9 ((3 · (1 / 3)) + (3 · (4 / 3))) = 5
137130, 136syl6eq 2810 . . . . . . . 8 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = 5)
138128, 129, 88, 137mvllmuld 11049 . . . . . . 7 (𝜑 → ((1 / 3) + (4 / 3)) = (5 / 3))
139138oveq1d 6828 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = ((5 / 3) · 𝐸))
140126, 127, 1393eqtr2d 2800 . . . . 5 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸))
141118, 140eqtrd 2794 . . . 4 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸))
14299, 100, 1413brtr3d 4835 . . 3 (𝜑 → (𝑌𝑋) < ((5 / 3) · 𝐸))
143 5lt6 11396 . . . . . . 7 5 < 6
144 3t2e6 11371 . . . . . . 7 (3 · 2) = 6
145143, 144breqtrri 4831 . . . . . 6 5 < (3 · 2)
146 3pos 11306 . . . . . . . 8 0 < 3
14716, 146pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
148 ltdivmul 11090 . . . . . . 7 ((5 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((5 / 3) < 2 ↔ 5 < (3 · 2)))
14985, 4, 147, 148mp3an 1573 . . . . . 6 ((5 / 3) < 2 ↔ 5 < (3 · 2))
150145, 149mpbir 221 . . . . 5 (5 / 3) < 2
151150a1i 11 . . . 4 (𝜑 → (5 / 3) < 2)
15289, 79, 5, 151ltmul1dd 12120 . . 3 (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸))
1533, 90, 8, 142, 152lttrd 10390 . 2 (𝜑 → (𝑌𝑋) < (2 · 𝐸))
1543, 8absltd 14367 . 2 (𝜑 → ((abs‘(𝑌𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌𝑋) ∧ (𝑌𝑋) < (2 · 𝐸))))
15584, 153, 154mpbir2and 995 1 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  2c2 11262  3c3 11263  4c4 11264  5c5 11265  6c6 11266  +crp 12025  abscabs 14173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175
This theorem is referenced by:  stoweidlem61  40781
  Copyright terms: Public domain W3C validator