Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem11 Structured version   Visualization version   GIF version

Theorem stoweidlem11 40648
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem11.1 (𝜑𝑁 ∈ ℕ)
stoweidlem11.2 (𝜑𝑡𝑇)
stoweidlem11.3 (𝜑𝑗 ∈ (1...𝑁))
stoweidlem11.4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem11.5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
stoweidlem11.6 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
stoweidlem11.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem11.8 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem11 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Distinct variable groups:   𝑖,𝑗   𝑡,𝑖,𝐸   𝑖,𝑁,𝑡   𝜑,𝑖   𝑡,𝑇   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝑇(𝑖,𝑗)   𝐸(𝑗)   𝑁(𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem11
StepHypRef Expression
1 stoweidlem11.2 . . 3 (𝜑𝑡𝑇)
2 sumex 14538 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V
3 eqid 2724 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
43fvmpt2 6405 . . 3 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
51, 2, 4sylancl 697 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
6 fzfid 12887 . . . 4 (𝜑 → (0...𝑁) ∈ Fin)
7 stoweidlem11.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
87rpred 11986 . . . . . 6 (𝜑𝐸 ∈ ℝ)
98adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
10 stoweidlem11.4 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
111adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
1210, 11ffvelrnd 6475 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
139, 12remulcld 10183 . . . 4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
146, 13fsumrecl 14585 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
15 stoweidlem11.3 . . . . . . . . 9 (𝜑𝑗 ∈ (1...𝑁))
16 elfzuz 12452 . . . . . . . . 9 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (ℤ‘1))
1715, 16syl 17 . . . . . . . 8 (𝜑𝑗 ∈ (ℤ‘1))
18 eluz2 11806 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
1917, 18sylib 208 . . . . . . 7 (𝜑 → (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
2019simp2d 1135 . . . . . 6 (𝜑𝑗 ∈ ℤ)
2120zred 11595 . . . . 5 (𝜑𝑗 ∈ ℝ)
228, 21remulcld 10183 . . . 4 (𝜑 → (𝐸 · 𝑗) ∈ ℝ)
23 stoweidlem11.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnred 11148 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
2524, 21resubcld 10571 . . . . . 6 (𝜑 → (𝑁𝑗) ∈ ℝ)
26 1red 10168 . . . . . 6 (𝜑 → 1 ∈ ℝ)
2725, 26readdcld 10182 . . . . 5 (𝜑 → ((𝑁𝑗) + 1) ∈ ℝ)
288, 23nndivred 11182 . . . . . 6 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
298, 28remulcld 10183 . . . . 5 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
3027, 29remulcld 10183 . . . 4 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))) ∈ ℝ)
3122, 30readdcld 10182 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
32 3re 11207 . . . . . . 7 3 ∈ ℝ
3332a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
34 3ne0 11228 . . . . . . 7 3 ≠ 0
3534a1i 11 . . . . . 6 (𝜑 → 3 ≠ 0)
3633, 35rereccld 10965 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
3721, 36readdcld 10182 . . . 4 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
3837, 8remulcld 10183 . . 3 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
39 fzfid 12887 . . . . . 6 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
408adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝐸 ∈ ℝ)
41 elfzelz 12456 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
42 peano2zm 11533 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
4315, 41, 423syl 18 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℤ)
4423nnzd 11594 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4521, 26resubcld 10571 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ∈ ℝ)
4621lem1d 11070 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ≤ 𝑗)
47 elfzuz3 12453 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
48 eluzle 11813 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑗) → 𝑗𝑁)
4915, 47, 483syl 18 . . . . . . . . . . . 12 (𝜑𝑗𝑁)
5045, 21, 24, 46, 49letrd 10307 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ≤ 𝑁)
51 eluz2 11806 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑗 − 1)) ↔ ((𝑗 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑗 − 1) ≤ 𝑁))
5243, 44, 50, 51syl3anbrc 1383 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(𝑗 − 1)))
53 fzss2 12495 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝑗 − 1)) → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5452, 53syl 17 . . . . . . . . 9 (𝜑 → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5554sselda 3709 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝑖 ∈ (0...𝑁))
5655, 12syldan 488 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
5740, 56remulcld 10183 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5839, 57fsumrecl 14585 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5958, 30readdcld 10182 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
6021ltm1d 11069 . . . . . . 7 (𝜑 → (𝑗 − 1) < 𝑗)
61 fzdisj 12482 . . . . . . 7 ((𝑗 − 1) < 𝑗 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
6260, 61syl 17 . . . . . 6 (𝜑 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
63 fzssp1 12498 . . . . . . . . . 10 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
6423nncnd 11149 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
65 1cnd 10169 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
6664, 65npcand 10509 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6766oveq2d 6781 . . . . . . . . . 10 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
6863, 67syl5sseq 3759 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
69 1zzd 11521 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
70 fzsubel 12491 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7169, 44, 20, 69, 70syl22anc 1440 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7215, 71mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
73 1m1e0 11202 . . . . . . . . . . 11 (1 − 1) = 0
7473oveq1i 6775 . . . . . . . . . 10 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
7572, 74syl6eleq 2813 . . . . . . . . 9 (𝜑 → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
7668, 75sseldd 3710 . . . . . . . 8 (𝜑 → (𝑗 − 1) ∈ (0...𝑁))
77 fzsplit 12481 . . . . . . . 8 ((𝑗 − 1) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7876, 77syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7920zcnd 11596 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
8079, 65npcand 10509 . . . . . . . . 9 (𝜑 → ((𝑗 − 1) + 1) = 𝑗)
8180oveq1d 6780 . . . . . . . 8 (𝜑 → (((𝑗 − 1) + 1)...𝑁) = (𝑗...𝑁))
8281uneq2d 3875 . . . . . . 7 (𝜑 → ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
8378, 82eqtrd 2758 . . . . . 6 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
847rpcnd 11988 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
8584adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
8612recnd 10181 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℂ)
8785, 86mulcld 10173 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
8862, 83, 6, 87fsumsplit 14591 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
89 fzfid 12887 . . . . . . 7 (𝜑 → (𝑗...𝑁) ∈ Fin)
908adantr 472 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
91 0zd 11502 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
92 0red 10154 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
93 0le1 10664 . . . . . . . . . . . . . . 15 0 ≤ 1
9493a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
9519simp3d 1136 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑗)
9692, 26, 21, 94, 95letrd 10307 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑗)
97 eluz2 11806 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
9891, 20, 96, 97syl3anbrc 1383 . . . . . . . . . . . 12 (𝜑𝑗 ∈ (ℤ‘0))
99 fzss1 12494 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘0) → (𝑗...𝑁) ⊆ (0...𝑁))
10098, 99syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗...𝑁) ⊆ (0...𝑁))
101100sselda 3709 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
102101, 10syldan 488 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
1031adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
104102, 103ffvelrnd 6475 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
10590, 104remulcld 10183 . . . . . . 7 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
10689, 105fsumrecl 14585 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
107 eluzfz2 12463 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑗) → 𝑁 ∈ (𝑗...𝑁))
108 ne0i 4029 . . . . . . . . 9 (𝑁 ∈ (𝑗...𝑁) → (𝑗...𝑁) ≠ ∅)
10915, 47, 107, 1084syl 19 . . . . . . . 8 (𝜑 → (𝑗...𝑁) ≠ ∅)
11023adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℕ)
11190, 110nndivred 11182 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 / 𝑁) ∈ ℝ)
11290, 111remulcld 10183 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
113 stoweidlem11.6 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
1147rpgt0d 11989 . . . . . . . . . . 11 (𝜑 → 0 < 𝐸)
115114adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 0 < 𝐸)
116 ltmul2 10987 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ (𝐸 / 𝑁) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
117104, 111, 90, 115, 116syl112anc 1443 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
118113, 117mpbid 222 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁)))
11989, 109, 105, 112, 118fsumlt 14652 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)))
12023nnne0d 11178 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12184, 64, 120divcld 10914 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
12284, 121mulcld 10173 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℂ)
123 fsumconst 14642 . . . . . . . . 9 (((𝑗...𝑁) ∈ Fin ∧ (𝐸 · (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
12489, 122, 123syl2anc 696 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
125 hashfz 13327 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑗) → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
12615, 47, 1253syl 18 . . . . . . . . 9 (𝜑 → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
127126oveq1d 6780 . . . . . . . 8 (𝜑 → ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
128124, 127eqtrd 2758 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
129119, 128breqtrd 4786 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
130106, 30, 58, 129ltadd2dd 10309 . . . . 5 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
13188, 130eqbrtrd 4782 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
132 stoweidlem11.5 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
13355, 132syldan 488 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ≤ 1)
134 1red 10168 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 1 ∈ ℝ)
135114adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 < 𝐸)
136 lemul2 10989 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
13756, 134, 40, 135, 136syl112anc 1443 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
138133, 137mpbid 222 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1))
13984mulid1d 10170 . . . . . . . . 9 (𝜑 → (𝐸 · 1) = 𝐸)
140139adantr 472 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · 1) = 𝐸)
141138, 140breqtrd 4786 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ 𝐸)
14239, 57, 40, 141fsumle 14651 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ Σ𝑖 ∈ (0...(𝑗 − 1))𝐸)
143 fsumconst 14642 . . . . . . . 8 (((0...(𝑗 − 1)) ∈ Fin ∧ 𝐸 ∈ ℂ) → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
14439, 84, 143syl2anc 696 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
145 0z 11501 . . . . . . . . . . 11 0 ∈ ℤ
146 1e0p1 11665 . . . . . . . . . . . . 13 1 = (0 + 1)
147146fveq2i 6307 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
14817, 147syl6eleq 2813 . . . . . . . . . . 11 (𝜑𝑗 ∈ (ℤ‘(0 + 1)))
149 eluzp1m1 11824 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑗 ∈ (ℤ‘(0 + 1))) → (𝑗 − 1) ∈ (ℤ‘0))
150145, 148, 149sylancr 698 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ (ℤ‘0))
151 hashfz 13327 . . . . . . . . . 10 ((𝑗 − 1) ∈ (ℤ‘0) → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
152150, 151syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
15379, 65subcld 10505 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℂ)
154153subid1d 10494 . . . . . . . . . 10 (𝜑 → ((𝑗 − 1) − 0) = (𝑗 − 1))
155154oveq1d 6780 . . . . . . . . 9 (𝜑 → (((𝑗 − 1) − 0) + 1) = ((𝑗 − 1) + 1))
156152, 155, 803eqtrd 2762 . . . . . . . 8 (𝜑 → (♯‘(0...(𝑗 − 1))) = 𝑗)
157156oveq1d 6780 . . . . . . 7 (𝜑 → ((♯‘(0...(𝑗 − 1))) · 𝐸) = (𝑗 · 𝐸))
15879, 84mulcomd 10174 . . . . . . 7 (𝜑 → (𝑗 · 𝐸) = (𝐸 · 𝑗))
159144, 157, 1583eqtrd 2762 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = (𝐸 · 𝑗))
160142, 159breqtrd 4786 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 𝑗))
16158, 22, 30, 160leadd1dd 10754 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16214, 59, 31, 131, 161ltletrd 10310 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
1638, 8remulcld 10183 . . . . 5 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
16422, 163readdcld 10182 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) ∈ ℝ)
16564, 79subcld 10505 . . . . . . . 8 (𝜑 → (𝑁𝑗) ∈ ℂ)
166165, 65addcld 10172 . . . . . . 7 (𝜑 → ((𝑁𝑗) + 1) ∈ ℂ)
16784, 166, 121mul12d 10358 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
168167oveq2d 6781 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) = ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16927, 28remulcld 10183 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ∈ ℝ)
1708, 169remulcld 10183 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ∈ ℝ)
171166, 84, 64, 120div12d 10950 . . . . . . . 8 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) = (𝐸 · (((𝑁𝑗) + 1) / 𝑁)))
17226, 21resubcld 10571 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ∈ ℝ)
173 elfzle1 12458 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
17415, 173syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑗)
17526, 21suble0d 10731 . . . . . . . . . . . . . . 15 (𝜑 → ((1 − 𝑗) ≤ 0 ↔ 1 ≤ 𝑗))
176174, 175mpbird 247 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ≤ 0)
177172, 92, 24, 176leadd2dd 10755 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) ≤ (𝑁 + 0))
17864, 65, 79addsub12d 10528 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + (1 − 𝑗)) = (1 + (𝑁𝑗)))
17965, 165addcomd 10351 . . . . . . . . . . . . . 14 (𝜑 → (1 + (𝑁𝑗)) = ((𝑁𝑗) + 1))
180178, 179eqtrd 2758 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) = ((𝑁𝑗) + 1))
18164addid1d 10349 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 0) = 𝑁)
182177, 180, 1813brtr3d 4791 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑗) + 1) ≤ 𝑁)
18323nngt0d 11177 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
184 lediv1 11001 . . . . . . . . . . . . 13 ((((𝑁𝑗) + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
18527, 24, 24, 183, 184syl112anc 1443 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
186182, 185mpbid 222 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁))
18764, 120dividd 10912 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑁) = 1)
188186, 187breqtrd 4786 . . . . . . . . . 10 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ 1)
18927, 23nndivred 11182 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ∈ ℝ)
190189, 26, 7lemul2d 12030 . . . . . . . . . 10 (𝜑 → ((((𝑁𝑗) + 1) / 𝑁) ≤ 1 ↔ (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1)))
191188, 190mpbid 222 . . . . . . . . 9 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1))
192191, 139breqtrd 4786 . . . . . . . 8 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ 𝐸)
193171, 192eqbrtrd 4782 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸)
194169, 8, 7lemul2d 12030 . . . . . . 7 (𝜑 → ((((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸 ↔ (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸)))
195193, 194mpbid 222 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸))
196170, 163, 22, 195leadd2dd 10755 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
197168, 196eqbrtrrd 4784 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
19884, 79mulcomd 10174 . . . . . . 7 (𝜑 → (𝐸 · 𝑗) = (𝑗 · 𝐸))
199198oveq1d 6780 . . . . . 6 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
20079, 84, 84adddird 10178 . . . . . 6 (𝜑 → ((𝑗 + 𝐸) · 𝐸) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
201199, 200eqtr4d 2761 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 + 𝐸) · 𝐸))
20221, 8readdcld 10182 . . . . . 6 (𝜑 → (𝑗 + 𝐸) ∈ ℝ)
203 stoweidlem11.8 . . . . . . 7 (𝜑𝐸 < (1 / 3))
2048, 36, 21, 203ltadd2dd 10309 . . . . . 6 (𝜑 → (𝑗 + 𝐸) < (𝑗 + (1 / 3)))
205202, 37, 7, 204ltmul1dd 12041 . . . . 5 (𝜑 → ((𝑗 + 𝐸) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
206201, 205eqbrtrd 4782 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) < ((𝑗 + (1 / 3)) · 𝐸))
20731, 164, 38, 197, 206lelttrd 10308 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) < ((𝑗 + (1 / 3)) · 𝐸))
20814, 31, 38, 162, 207lttrd 10311 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝑗 + (1 / 3)) · 𝐸))
2095, 208eqbrtrd 4782 1 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  Vcvv 3304  cun 3678  cin 3679  wss 3680  c0 4023   class class class wbr 4760  cmpt 4837  wf 5997  cfv 6001  (class class class)co 6765  Fincfn 8072  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  3c3 11184  cz 11490  cuz 11800  +crp 11946  ...cfz 12440  chash 13232  Σcsu 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-ico 12295  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537
This theorem is referenced by:  stoweidlem34  40671
  Copyright terms: Public domain W3C validator