Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   GIF version

Theorem stoweidlem10 40744
Description: Lemma for stoweid 40797. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 10546 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
213ad2ant1 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -𝐴 ∈ ℝ)
3 simp2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℕ0)
4 simpr 471 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1)
5 simpl 468 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
6 1red 10257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ)
75, 6lenegd 10808 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴))
84, 7mpbid 222 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴)
983adant2 1125 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -1 ≤ -𝐴)
10 bernneq 13197 . . 3 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
112, 3, 9, 10syl3anc 1476 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
12 recn 10228 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13123ad2ant1 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝐴 ∈ ℂ)
14 nn0cn 11504 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
15143ad2ant2 1128 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℂ)
16 1cnd 10258 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 1 ∈ ℂ)
17 mulneg1 10668 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁))
1817oveq2d 6809 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
19183adant3 1126 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
20 simp3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ)
21 mulcl 10222 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
22213adant3 1126 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
2320, 22negsubd 10600 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁)))
24 mulcom 10224 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
2524oveq2d 6809 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
26253adant3 1126 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2719, 23, 263eqtrd 2809 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2813, 15, 16, 27syl3anc 1476 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
29 1cnd 10258 . . . . 5 (𝐴 ∈ ℝ → 1 ∈ ℂ)
3029, 12negsubd 10600 . . . 4 (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴))
3130oveq1d 6808 . . 3 (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
32313ad2ant1 1127 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
3311, 28, 323brtr3d 4817 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  (class class class)co 6793  cc 10136  cr 10137  1c1 10139   + caddc 10141   · cmul 10143  cle 10277  cmin 10468  -cneg 10469  0cn0 11494  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068
This theorem is referenced by:  stoweidlem24  40758
  Copyright terms: Public domain W3C validator