HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stj Structured version   Visualization version   GIF version

Theorem stj 29222
Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
stj (𝑆 ∈ States → (((𝐴C𝐵C ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem stj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isst 29200 . . . 4 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
21simp3bi 1098 . . 3 (𝑆 ∈ States → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
3 sseq1 3659 . . . . 5 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
4 oveq1 6697 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 𝑦) = (𝐴 𝑦))
54fveq2d 6233 . . . . . 6 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
6 fveq2 6229 . . . . . . 7 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
76oveq1d 6705 . . . . . 6 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
85, 7eqeq12d 2666 . . . . 5 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
93, 8imbi12d 333 . . . 4 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
10 fveq2 6229 . . . . . 6 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1110sseq2d 3666 . . . . 5 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
12 oveq2 6698 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1312fveq2d 6233 . . . . . 6 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
14 fveq2 6229 . . . . . . 7 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1514oveq2d 6706 . . . . . 6 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
1613, 15eqeq12d 2666 . . . . 5 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
1711, 16imbi12d 333 . . . 4 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
189, 17rspc2v 3353 . . 3 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
192, 18syl5com 31 . 2 (𝑆 ∈ States → ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2019impd 446 1 (𝑆 ∈ States → (((𝐴C𝐵C ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  wf 5922  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  [,]cicc 12216  chil 27904   C cch 27914  cort 27915   chj 27918  Statescst 27947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-hilex 27984
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-sh 28192  df-ch 28206  df-st 29198
This theorem is referenced by:  sto1i  29223  stlei  29227  stji1i  29229
  Copyright terms: Public domain W3C validator