Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Visualization version   GIF version

Theorem stirlinglem6 40799
Description: A series that converges to log (N+1)/N. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
Assertion
Ref Expression
stirlinglem6 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝐻(𝑗)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2760 . . 3 (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
2 eqid 2760 . . 3 (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) = (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))
3 eqid 2760 . . 3 (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
4 stirlinglem6.1 . . 3 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
5 eqid 2760 . . 3 (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
6 2re 11282 . . . . . . 7 2 ∈ ℝ
76a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 11219 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8remulcld 10262 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
10 0le2 11303 . . . . . . 7 0 ≤ 2
1110a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 2)
12 0red 10233 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
13 nngt0 11241 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1412, 8, 13ltled 10377 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
157, 8, 11, 14mulge0d 10796 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
169, 15ge0p1rpd 12095 . . . 4 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
1716rpreccld 12075 . . 3 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
18 1red 10247 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
1918renegcld 10649 . . . . 5 (𝑁 ∈ ℕ → -1 ∈ ℝ)
2017rpred 12065 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
21 neg1lt0 11319 . . . . . 6 -1 < 0
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ → -1 < 0)
2317rpgt0d 12068 . . . . 5 (𝑁 ∈ ℕ → 0 < (1 / ((2 · 𝑁) + 1)))
2419, 12, 20, 22, 23lttrd 10390 . . . 4 (𝑁 ∈ ℕ → -1 < (1 / ((2 · 𝑁) + 1)))
25 1rp 12029 . . . . . 6 1 ∈ ℝ+
2625a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℝ+)
27 1cnd 10248 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2827div1d 10985 . . . . . 6 (𝑁 ∈ ℕ → (1 / 1) = 1)
29 2rp 12030 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12035 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3230, 31rpmulcld 12081 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3318, 32ltaddrp2d 12099 . . . . . 6 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
3428, 33eqbrtrd 4826 . . . . 5 (𝑁 ∈ ℕ → (1 / 1) < ((2 · 𝑁) + 1))
3526, 16, 34ltrec1d 12085 . . . 4 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) < 1)
3620, 18absltd 14367 . . . 4 (𝑁 ∈ ℕ → ((abs‘(1 / ((2 · 𝑁) + 1))) < 1 ↔ (-1 < (1 / ((2 · 𝑁) + 1)) ∧ (1 / ((2 · 𝑁) + 1)) < 1)))
3724, 35, 36mpbir2and 995 . . 3 (𝑁 ∈ ℕ → (abs‘(1 / ((2 · 𝑁) + 1))) < 1)
381, 2, 3, 4, 5, 17, 37stirlinglem5 40798 . 2 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))))
39 2cnd 11285 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
40 nncn 11220 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4139, 40mulcld 10252 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4241, 27addcld 10251 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
439, 18readdcld 10261 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
44 2pos 11304 . . . . . . . . . . . 12 0 < 2
4544a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 2)
467, 8, 45, 13mulgt0d 10384 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < (2 · 𝑁))
479ltp1d 11146 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) < ((2 · 𝑁) + 1))
4812, 9, 43, 46, 47lttrd 10390 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4948gt0ne0d 10784 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5042, 49dividd 10991 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
5150eqcomd 2766 . . . . . 6 (𝑁 ∈ ℕ → 1 = (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)))
5251oveq1d 6828 . . . . 5 (𝑁 ∈ ℕ → (1 + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5351oveq1d 6828 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5452, 53oveq12d 6831 . . . 4 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))))
5542, 27, 42, 49divdird 11031 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5655eqcomd 2766 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)))
5742, 27, 42, 49divsubdird 11032 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5857eqcomd 2766 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)))
5956, 58oveq12d 6831 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))))
6041, 27, 27addassd 10254 . . . . . . . 8 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
61 1p1e2 11326 . . . . . . . . . 10 (1 + 1) = 2
6261a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 + 1) = 2)
6362oveq2d 6829 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
6439mulid1d 10249 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 1) = 2)
6564eqcomd 2766 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 = (2 · 1))
6665oveq2d 6829 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = ((2 · 𝑁) + (2 · 1)))
6739, 40, 27adddid 10256 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6866, 67eqtr4d 2797 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
6960, 63, 683eqtrd 2798 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = (2 · (𝑁 + 1)))
7069oveq1d 6828 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)))
7141, 27pncand 10585 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
7271oveq1d 6828 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((2 · 𝑁) / ((2 · 𝑁) + 1)))
7370, 72oveq12d 6831 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7459, 73eqtrd 2794 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7540, 27addcld 10251 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
7639, 75mulcld 10252 . . . . . 6 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℂ)
7746gt0ne0d 10784 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ≠ 0)
7876, 41, 42, 77, 49divcan7d 11021 . . . . 5 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
7945gt0ne0d 10784 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
8013gt0ne0d 10784 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8139, 39, 75, 40, 79, 80divmuldivd 11034 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
8281eqcomd 2766 . . . . 5 (𝑁 ∈ ℕ → ((2 · (𝑁 + 1)) / (2 · 𝑁)) = ((2 / 2) · ((𝑁 + 1) / 𝑁)))
8339, 79dividd 10991 . . . . . . 7 (𝑁 ∈ ℕ → (2 / 2) = 1)
8483oveq1d 6828 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = (1 · ((𝑁 + 1) / 𝑁)))
8575, 40, 80divcld 10993 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
8685mulid2d 10250 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8784, 86eqtrd 2794 . . . . 5 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8878, 82, 873eqtrd 2798 . . . 4 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((𝑁 + 1) / 𝑁))
8954, 74, 883eqtrd 2798 . . 3 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = ((𝑁 + 1) / 𝑁))
9089fveq2d 6356 . 2 (𝑁 ∈ ℕ → (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))) = (log‘((𝑁 + 1) / 𝑁)))
9138, 90breqtrd 4830 1 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  +crp 12025  seqcseq 12995  cexp 13054  abscabs 14173  cli 14414  logclog 24500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-tan 15001  df-pi 15002  df-dvds 15183  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-ulm 24330  df-log 24502
This theorem is referenced by:  stirlinglem7  40800
  Copyright terms: Public domain W3C validator