Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   GIF version

Theorem stirlinglem14 40818
Description: The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem14.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem14 𝑐 ∈ ℝ+ 𝐴𝑐
Distinct variable group:   𝐴,𝑐
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛,𝑐)

Proof of Theorem stirlinglem14
Dummy variables 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
2 stirlinglem14.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
31, 2stirlinglem13 40817 . 2 𝑑 ∈ ℝ 𝐵𝑑
4 simpl 468 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℝ)
54rpefcld 15041 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp‘𝑑) ∈ ℝ+)
6 nnuz 11930 . . . . . 6 ℕ = (ℤ‘1)
7 1zzd 11615 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 1 ∈ ℤ)
8 efcn 24417 . . . . . . 7 exp ∈ (ℂ–cn→ℂ)
98a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → exp ∈ (ℂ–cn→ℂ))
10 nnnn0 11506 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 faccl 13274 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
12 nncn 11234 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
1310, 11, 123syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
14 2cnd 11299 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15 nncn 11234 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1614, 15mulcld 10266 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1716sqrtcld 14384 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
18 epr 15142 . . . . . . . . . . . . . . . . 17 e ∈ ℝ+
19 rpcn 12044 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → e ∈ ℂ)
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 e ∈ ℂ
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
22 0re 10246 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
23 epos 15141 . . . . . . . . . . . . . . . . 17 0 < e
2422, 23gtneii 10355 . . . . . . . . . . . . . . . 16 e ≠ 0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
2615, 21, 25divcld 11007 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
2726, 10expcld 13215 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2817, 27mulcld 10266 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
29 2rp 12040 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12045 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3230, 31rpmulcld 12091 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
3332sqrtgt0d 14359 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
3433gt0ne0d 10798 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
35 nnne0 11259 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3615, 21, 35, 25divne0d 11023 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
37 nnz 11606 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3826, 36, 37expne0d 13221 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
3917, 27, 34, 38mulne0d 10885 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
4013, 28, 39divcld 11007 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
411fvmpt2 6435 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4240, 41mpdan 667 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4342, 40eqeltrd 2850 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
44 nnne0 11259 . . . . . . . . . . . 12 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
4510, 11, 443syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘𝑛) ≠ 0)
4613, 28, 45, 39divne0d 11023 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ≠ 0)
4742, 46eqnetrd 3010 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ≠ 0)
4843, 47logcld 24538 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℂ)
492, 48fmpti 6527 . . . . . . 7 𝐵:ℕ⟶ℂ
5049a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵:ℕ⟶ℂ)
51 simpr 471 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵𝑑)
524recnd 10274 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℂ)
536, 7, 9, 50, 51, 52climcncf 22923 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp ∘ 𝐵) ⇝ (exp‘𝑑))
548elexi 3365 . . . . . . . . 9 exp ∈ V
55 nnex 11232 . . . . . . . . . . 11 ℕ ∈ V
5655mptex 6633 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) ∈ V
572, 56eqeltri 2846 . . . . . . . . 9 𝐵 ∈ V
5854, 57coex 7269 . . . . . . . 8 (exp ∘ 𝐵) ∈ V
5958a1i 11 . . . . . . 7 (⊤ → (exp ∘ 𝐵) ∈ V)
6055mptex 6633 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ∈ V
611, 60eqeltri 2846 . . . . . . . 8 𝐴 ∈ V
6261a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ V)
63 1zzd 11615 . . . . . . 7 (⊤ → 1 ∈ ℤ)
642funmpt2 6069 . . . . . . . . . 10 Fun 𝐵
65 id 22 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
66 rabid2 3267 . . . . . . . . . . . . 13 (ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V} ↔ ∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ V)
671stirlinglem2 40806 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
68 relogcl 24543 . . . . . . . . . . . . . 14 ((𝐴𝑛) ∈ ℝ+ → (log‘(𝐴𝑛)) ∈ ℝ)
69 elex 3364 . . . . . . . . . . . . . 14 ((log‘(𝐴𝑛)) ∈ ℝ → (log‘(𝐴𝑛)) ∈ V)
7067, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ V)
7166, 70mprgbir 3076 . . . . . . . . . . . 12 ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
722dmmpt 5773 . . . . . . . . . . . 12 dom 𝐵 = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
7371, 72eqtr4i 2796 . . . . . . . . . . 11 ℕ = dom 𝐵
7465, 73syl6eleq 2860 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵)
75 fvco 6418 . . . . . . . . . 10 ((Fun 𝐵𝑘 ∈ dom 𝐵) → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
7664, 74, 75sylancr 575 . . . . . . . . 9 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
771a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
78 simpr 471 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
7978fveq2d 6337 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
8078oveq2d 6812 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
8180fveq2d 6337 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
8278oveq1d 6811 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
8382, 78oveq12d 6814 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
8481, 83oveq12d 6814 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
8579, 84oveq12d 6814 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
86 nnnn0 11506 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
87 faccl 13274 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
88 nncn 11234 . . . . . . . . . . . . . . . 16 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
90 2cnd 11299 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∈ ℂ)
91 nncn 11234 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
9290, 91mulcld 10266 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
9392sqrtcld 14384 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
9420a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ∈ ℂ)
9524a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ≠ 0)
9691, 94, 95divcld 11007 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
9796, 86expcld 13215 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
9893, 97mulcld 10266 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
9929a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
100 nnrp 12045 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
10199, 100rpmulcld 12091 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
102101sqrtgt0d 14359 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
103102gt0ne0d 10798 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
104 nnne0 11259 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
10591, 94, 104, 95divne0d 11023 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
106 nnz 11606 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
10796, 105, 106expne0d 13221 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
10893, 97, 103, 107mulne0d 10885 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
10989, 98, 108divcld 11007 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
11077, 85, 65, 109fvmptd 6432 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
111110, 109eqeltrd 2850 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
112 nnne0 11259 . . . . . . . . . . . . . . 15 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (!‘𝑘) ≠ 0)
11489, 98, 113, 108divne0d 11023 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ≠ 0)
115110, 114eqnetrd 3010 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
116111, 115logcld 24538 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (log‘(𝐴𝑘)) ∈ ℂ)
117 nfcv 2913 . . . . . . . . . . . 12 𝑛𝑘
118 nfcv 2913 . . . . . . . . . . . . 13 𝑛log
119 nfmpt1 4882 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
1201, 119nfcxfr 2911 . . . . . . . . . . . . . 14 𝑛𝐴
121120, 117nffv 6341 . . . . . . . . . . . . 13 𝑛(𝐴𝑘)
122118, 121nffv 6341 . . . . . . . . . . . 12 𝑛(log‘(𝐴𝑘))
123 fveq2 6333 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
124123fveq2d 6337 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
125117, 122, 124, 2fvmptf 6445 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℂ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
126116, 125mpdan 667 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐵𝑘) = (log‘(𝐴𝑘)))
127126fveq2d 6337 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(𝐵𝑘)) = (exp‘(log‘(𝐴𝑘))))
128 eflog 24544 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ (𝐴𝑘) ≠ 0) → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
129111, 115, 128syl2anc 573 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
13076, 127, 1293eqtrd 2809 . . . . . . . 8 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
131130adantl 467 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
1326, 59, 62, 63, 131climeq 14506 . . . . . 6 (⊤ → ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑)))
133132trud 1641 . . . . 5 ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑))
13453, 133sylib 208 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐴 ⇝ (exp‘𝑑))
135 breq2 4791 . . . . 5 (𝑐 = (exp‘𝑑) → (𝐴𝑐𝐴 ⇝ (exp‘𝑑)))
136135rspcev 3460 . . . 4 (((exp‘𝑑) ∈ ℝ+𝐴 ⇝ (exp‘𝑑)) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1375, 134, 136syl2anc 573 . . 3 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
138137rexlimiva 3176 . 2 (∃𝑑 ∈ ℝ 𝐵𝑑 → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1393, 138ax-mp 5 1 𝑐 ∈ ℝ+ 𝐴𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wtru 1632  wcel 2145  wne 2943  wrex 3062  {crab 3065  Vcvv 3351   class class class wbr 4787  cmpt 4864  dom cdm 5250  ccom 5254  Fun wfun 6024  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  1c1 10143   · cmul 10147   / cdiv 10890  cn 11226  2c2 11276  0cn0 11499  +crp 12035  cexp 13067  !cfa 13264  csqrt 14181  cli 14423  expce 14998  eceu 14999  cnccncf 22899  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-xnn0 11571  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-e 15005  df-sin 15006  df-cos 15007  df-tan 15008  df-pi 15009  df-dvds 15190  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-ulm 24351  df-log 24524  df-cxp 24525
This theorem is referenced by:  stirling  40820
  Copyright terms: Public domain W3C validator