Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Structured version   Visualization version   GIF version

Theorem stirlinglem10 40822
 Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem10.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem10.4 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
stirlinglem10.5 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
Assertion
Ref Expression
stirlinglem10 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑛,𝐿   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)   𝐿(𝑘)

Proof of Theorem stirlinglem10
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11937 . 2 ℕ = (ℤ‘1)
2 1zzd 11621 . 2 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 stirlinglem10.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4 stirlinglem10.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
5 eqid 2761 . . 3 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
6 stirlinglem10.4 . . 3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
73, 4, 5, 6stirlinglem9 40821 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
8 2cnd 11306 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9 nncn 11241 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
108, 9mulcld 10273 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
11 1cnd 10269 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1210, 11addcld 10272 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
1312sqcld 13221 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
14 0red 10254 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
15 1red 10268 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℝ)
16 2re 11303 . . . . . . . . . . 11 2 ∈ ℝ
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 nnre 11240 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1917, 18remulcld 10283 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
2019, 15readdcld 10282 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
21 0lt1 10763 . . . . . . . . 9 0 < 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
23 2rp 12051 . . . . . . . . . . 11 2 ∈ ℝ+
2423a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
25 nnrp 12056 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2624, 25rpmulcld 12102 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
2715, 26ltaddrp2d 12120 . . . . . . . 8 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
2814, 15, 20, 22, 27lttrd 10411 . . . . . . 7 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
2928gt0ne0d 10805 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
30 2z 11622 . . . . . . 7 2 ∈ ℤ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℤ)
3212, 29, 31expne0d 13229 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ≠ 0)
3313, 32reccld 11007 . . . 4 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
3415renegcld 10670 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℝ)
3520resqcld 13250 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ)
3635, 32rereccld 11065 . . . . . 6 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
37 1re 10252 . . . . . . . 8 1 ∈ ℝ
38 lt0neg2 10748 . . . . . . . 8 (1 ∈ ℝ → (0 < 1 ↔ -1 < 0))
3937, 38ax-mp 5 . . . . . . 7 (0 < 1 ↔ -1 < 0)
4022, 39sylib 208 . . . . . 6 (𝑁 ∈ ℕ → -1 < 0)
4120, 29sqgt0d 13252 . . . . . . 7 (𝑁 ∈ ℕ → 0 < (((2 · 𝑁) + 1)↑2))
4235, 41recgt0d 11171 . . . . . 6 (𝑁 ∈ ℕ → 0 < (1 / (((2 · 𝑁) + 1)↑2)))
4334, 14, 36, 40, 42lttrd 10411 . . . . 5 (𝑁 ∈ ℕ → -1 < (1 / (((2 · 𝑁) + 1)↑2)))
44 2nn 11398 . . . . . . . 8 2 ∈ ℕ
4544a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
46 expgt1 13113 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ((2 · 𝑁) + 1)) → 1 < (((2 · 𝑁) + 1)↑2))
4720, 45, 27, 46syl3anc 1477 . . . . . 6 (𝑁 ∈ ℕ → 1 < (((2 · 𝑁) + 1)↑2))
4835, 41elrpd 12083 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
4948recgt1d 12100 . . . . . 6 (𝑁 ∈ ℕ → (1 < (((2 · 𝑁) + 1)↑2) ↔ (1 / (((2 · 𝑁) + 1)↑2)) < 1))
5047, 49mpbid 222 . . . . 5 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) < 1)
5136, 15absltd 14388 . . . . 5 (𝑁 ∈ ℕ → ((abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1 ↔ (-1 < (1 / (((2 · 𝑁) + 1)↑2)) ∧ (1 / (((2 · 𝑁) + 1)↑2)) < 1)))
5243, 50, 51mpbir2and 995 . . . 4 (𝑁 ∈ ℕ → (abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1)
53 1nn0 11521 . . . . 5 1 ∈ ℕ0
5453a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
55 stirlinglem10.5 . . . . . 6 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
5655a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)))
57 simpr 479 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → 𝑘 = 𝑗)
5857oveq2d 6831 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
59 elnnuz 11938 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
6059biimpri 218 . . . . . 6 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
6160adantl 473 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
6233adantr 472 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
6361nnnn0d 11564 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ0)
6462, 63expcld 13223 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗) ∈ ℂ)
6556, 58, 61, 64fvmptd 6452 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (𝐿𝑗) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
6633, 52, 54, 65geolim2 14822 . . 3 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))))
6733exp1d 13218 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2))↑1) = (1 / (((2 · 𝑁) + 1)↑2)))
6813, 32dividd 11012 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) = 1)
6968eqcomd 2767 . . . . . . 7 (𝑁 ∈ ℕ → 1 = ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)))
7069oveq1d 6830 . . . . . 6 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7148rpcnne0d 12095 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0))
72 divsubdir 10934 . . . . . . 7 (((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0)) → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7313, 11, 71, 72syl3anc 1477 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
74 ax-1cn 10207 . . . . . . . . . 10 1 ∈ ℂ
75 binom2 13194 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7610, 74, 75sylancl 697 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7776oveq1d 6830 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1))
788, 9sqmuld 13235 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
79 sq2 13175 . . . . . . . . . . . . . . 15 (2↑2) = 4
8079a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑2) = 4)
8180oveq1d 6830 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
8278, 81eqtrd 2795 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
8310mulid1d 10270 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((2 · 𝑁) · 1) = (2 · 𝑁))
8483oveq2d 6831 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (2 · (2 · 𝑁)))
858, 8, 9mulassd 10276 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
86 2t2e4 11390 . . . . . . . . . . . . . . 15 (2 · 2) = 4
8786a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · 2) = 4)
8887oveq1d 6830 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (4 · 𝑁))
8984, 85, 883eqtr2d 2801 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (4 · 𝑁))
9082, 89oveq12d 6833 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
91 4cn 11311 . . . . . . . . . . . . 13 4 ∈ ℂ
9291a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 4 ∈ ℂ)
939sqcld 13221 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
9492, 93, 9adddid 10277 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
959sqvald 13220 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
969mulid1d 10270 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
9796eqcomd 2767 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 = (𝑁 · 1))
9895, 97oveq12d 6833 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
999, 9, 11adddid 10277 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
10098, 99eqtr4d 2798 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
101100oveq2d 6831 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = (4 · (𝑁 · (𝑁 + 1))))
10290, 94, 1013eqtr2d 2801 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = (4 · (𝑁 · (𝑁 + 1))))
103 sq1 13173 . . . . . . . . . . 11 (1↑2) = 1
104103a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1↑2) = 1)
105102, 104oveq12d 6833 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) = ((4 · (𝑁 · (𝑁 + 1))) + 1))
106105oveq1d 6830 . . . . . . . 8 (𝑁 ∈ ℕ → (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1) = (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1))
1079, 11addcld 10272 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1089, 107mulcld 10273 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ∈ ℂ)
10992, 108mulcld 10273 . . . . . . . . 9 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ∈ ℂ)
110109, 11pncand 10606 . . . . . . . 8 (𝑁 ∈ ℕ → (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1) = (4 · (𝑁 · (𝑁 + 1))))
11177, 106, 1103eqtrd 2799 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (4 · (𝑁 · (𝑁 + 1))))
112111oveq1d 6830 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11370, 73, 1123eqtr2d 2801 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11467, 113oveq12d 6833 . . . 4 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))))
115 4pos 11329 . . . . . . . . 9 0 < 4
116115a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
117116gt0ne0d 10805 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
118 nnne0 11266 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11918, 15readdcld 10282 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
120 nngt0 11262 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
12118ltp1d 11167 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
12214, 18, 119, 120, 121lttrd 10411 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
123122gt0ne0d 10805 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
1249, 107, 118, 123mulne0d 10892 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ≠ 0)
12592, 108, 117, 124mulne0d 10892 . . . . . 6 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ≠ 0)
12611, 13, 109, 13, 32, 32, 125divdivdivd 11061 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12711, 13mulcomd 10274 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((2 · 𝑁) + 1)↑2)) = ((((2 · 𝑁) + 1)↑2) · 1))
128127oveq1d 6830 . . . . 5 (𝑁 ∈ ℕ → ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12911mulid1d 10270 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 · 1) = 1)
130129eqcomd 2767 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 = (1 · 1))
131130oveq1d 6830 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
13211, 92, 11, 108, 117, 124divmuldivd 11055 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
133131, 132eqtr4d 2798 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
13468, 133oveq12d 6833 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))))
13513, 13, 11, 109, 32, 125divmuldivd 11055 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
13692, 117reccld 11007 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
137108, 124reccld 11007 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (𝑁 · (𝑁 + 1))) ∈ ℂ)
138136, 137mulcld 10273 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) ∈ ℂ)
139138mulid2d 10271 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
140134, 135, 1393eqtr3d 2803 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
141126, 128, 1403eqtrd 2799 . . . 4 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
142114, 141eqtrd 2795 . . 3 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14366, 142breqtrd 4831 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14459biimpi 206 . . . 4 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
145144adantl 473 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
1466a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
147 oveq2 6823 . . . . . . . . . 10 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
148147oveq1d 6830 . . . . . . . . 9 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
149148oveq2d 6831 . . . . . . . 8 (𝑘 = 𝑛 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑛) + 1)))
150147oveq2d 6831 . . . . . . . 8 (𝑘 = 𝑛 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)))
151149, 150oveq12d 6833 . . . . . . 7 (𝑘 = 𝑛 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
152151adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) ∧ 𝑘 = 𝑛) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
153 elfznn 12584 . . . . . . 7 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
154153adantl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
155 2cnd 11306 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℂ)
156154nncnd 11249 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℂ)
157155, 156mulcld 10273 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℂ)
158 1cnd 10269 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℂ)
159157, 158addcld 10272 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℂ)
160 0red 10254 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ∈ ℝ)
161 1red 10268 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
16216a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ)
163 nnre 11240 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
164162, 163remulcld 10283 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
165164, 161readdcld 10282 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
16621a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 1)
16723a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
168 nnrp 12056 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
169167, 168rpmulcld 12102 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
170161, 169ltaddrp2d 12120 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 < ((2 · 𝑛) + 1))
171160, 161, 165, 166, 170lttrd 10411 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
172153, 171syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → 0 < ((2 · 𝑛) + 1))
173172gt0ne0d 10805 . . . . . . . . 9 (𝑛 ∈ (1...𝑗) → ((2 · 𝑛) + 1) ≠ 0)
174173adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ≠ 0)
175159, 174reccld 11007 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
1769adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℂ)
177155, 176mulcld 10273 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℂ)
178177, 158addcld 10272 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℂ)
17929adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ≠ 0)
180178, 179reccld 11007 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
181 2nn0 11522 . . . . . . . . . 10 2 ∈ ℕ0
182181a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℕ0)
183154nnnn0d 11564 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ0)
184182, 183nn0mulcld 11569 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℕ0)
185180, 184expcld 13223 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℂ)
186175, 185mulcld 10273 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℂ)
187146, 152, 154, 186fvmptd 6452 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
188187adantlr 753 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
189171gt0ne0d 10805 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
190165, 189rereccld 11065 . . . . . . 7 (𝑛 ∈ ℕ → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
191153, 190syl 17 . . . . . 6 (𝑛 ∈ (1...𝑗) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
192191adantl 473 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
19320, 29rereccld 11065 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
194193adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
195194, 184reexpcld 13240 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
196195adantlr 753 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
197192, 196remulcld 10283 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℝ)
198188, 197eqeltrd 2840 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ∈ ℝ)
199 readdcl 10232 . . . 4 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑛 + 𝑖) ∈ ℝ)
200199adantl 473 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑛 + 𝑖) ∈ ℝ)
201145, 198, 200seqcl 13036 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ∈ ℝ)
20255a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)))
203 oveq2 6823 . . . . . . 7 (𝑘 = 𝑛 → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
204203adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) ∧ 𝑘 = 𝑛) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20533adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
206205, 183expcld 13223 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℂ)
207202, 204, 154, 206fvmptd 6452 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20836adantr 472 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
209208, 183reexpcld 13240 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ)
210207, 209eqeltrd 2840 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
211210adantlr 753 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
212145, 211, 200seqcl 13036 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐿)‘𝑗) ∈ ℝ)
21330a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 2 ∈ ℤ)
214 elfzelz 12556 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℤ)
215213, 214zmulcld 11701 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → (2 · 𝑛) ∈ ℤ)
216 1exp 13104 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℤ → (1↑(2 · 𝑛)) = 1)
217215, 216syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = 1)
218 1exp 13104 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
219214, 218syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑𝑛) = 1)
220217, 219eqtr4d 2798 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = (1↑𝑛))
221220adantl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1↑(2 · 𝑛)) = (1↑𝑛))
222178, 183, 182expmuld 13226 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑(2 · 𝑛)) = ((((2 · 𝑁) + 1)↑2)↑𝑛))
223221, 222oveq12d 6833 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
224158, 178, 179, 184expdivd 13237 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
225178sqcld 13221 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
22630a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℤ)
227178, 179, 226expne0d 13229 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ≠ 0)
228158, 225, 227, 183expdivd 13237 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
229223, 224, 2283eqtr4d 2805 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
230229oveq2d 6831 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
231 1rp 12050 . . . . . . . . . . 11 1 ∈ ℝ+
232231a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ+)
23316a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℝ)
234154nnred 11248 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℝ)
235233, 234remulcld 10283 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℝ)
236182nn0ge0d 11567 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 2)
237183nn0ge0d 11567 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑛)
238233, 234, 236, 237mulge0d 10817 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑛))
239235, 238ge0p1rpd 12116 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℝ+)
240 1red 10268 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ)
241232rpge0d 12090 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 1)
242161, 165, 170ltled 10398 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ≤ ((2 · 𝑛) + 1))
243153, 242syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → 1 ≤ ((2 · 𝑛) + 1))
244243adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ≤ ((2 · 𝑛) + 1))
245232, 239, 240, 241, 244lediv2ad 12108 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ (1 / 1))
246158div1d 11006 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / 1) = 1)
247245, 246breqtrd 4831 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ 1)
248154, 190syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
24918adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℝ)
250233, 249remulcld 10283 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℝ)
25114, 18, 120ltled 10398 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
252251adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑁)
253233, 249, 236, 252mulge0d 10817 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑁))
254250, 253ge0p1rpd 12116 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℝ+)
255254, 226rpexpcld 13247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
256255rpreccld 12096 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ+)
257214adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℤ)
258256, 257rpexpcld 13247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ+)
259248, 240, 258lemul1d 12129 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) ≤ 1 ↔ ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))))
260247, 259mpbid 222 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
261206mulid2d 10271 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
262260, 261breqtrd 4831 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
263230, 262eqbrtrd 4827 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
264263, 187, 2073brtr4d 4837 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
265264adantlr 753 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
266145, 198, 211, 265serle 13071 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ≤ (seq1( + , 𝐿)‘𝑗))
2671, 2, 7, 143, 201, 212, 266climle 14590 1 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ≠ wne 2933   class class class wbr 4805   ↦ cmpt 4882  ‘cfv 6050  (class class class)co 6815  ℂcc 10147  ℝcr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154   < clt 10287   ≤ cle 10288   − cmin 10479  -cneg 10480   / cdiv 10897  ℕcn 11233  2c2 11283  4c4 11285  ℕ0cn0 11505  ℤcz 11590  ℤ≥cuz 11900  ℝ+crp 12046  ...cfz 12540  seqcseq 13016  ↑cexp 13075  !cfa 13275  √csqrt 14193  abscabs 14194   ⇝ cli 14435  eceu 15013  logclog 24522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-xnn0 11577  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-fac 13276  df-bc 13305  df-hash 13333  df-shft 14027  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-ef 15018  df-e 15019  df-sin 15020  df-cos 15021  df-tan 15022  df-pi 15023  df-dvds 15204  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-cmp 21413  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-limc 23850  df-dv 23851  df-ulm 24351  df-log 24524  df-cxp 24525 This theorem is referenced by:  stirlinglem12  40824
 Copyright terms: Public domain W3C validator