MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmetval Structured version   Visualization version   GIF version

Theorem stdbdmetval 22300
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmetval ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem stdbdmetval
StepHypRef Expression
1 ovex 6663 . . . 4 (𝐴𝐶𝐵) ∈ V
2 ifexg 4148 . . . 4 (((𝐴𝐶𝐵) ∈ V ∧ 𝑅𝑉) → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
31, 2mpan 705 . . 3 (𝑅𝑉 → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
4 oveq12 6644 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐶𝑦) = (𝐴𝐶𝐵))
54breq1d 4654 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦) ≤ 𝑅 ↔ (𝐴𝐶𝐵) ≤ 𝑅))
65, 4ifbieq1d 4100 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
7 stdbdmet.1 . . . 4 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
86, 7ovmpt2ga 6775 . . 3 ((𝐴𝑋𝐵𝑋 ∧ if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
93, 8syl3an3 1359 . 2 ((𝐴𝑋𝐵𝑋𝑅𝑉) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
1093comr 1271 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  Vcvv 3195  ifcif 4077   class class class wbr 4644  (class class class)co 6635  cmpt2 6637  cle 10060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-iota 5839  df-fun 5878  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640
This theorem is referenced by:  stdbdbl  22303
  Copyright terms: Public domain W3C validator