![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuzfz | Structured version Visualization version GIF version |
Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ssuzfz.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ssuzfz.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
ssuzfz.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
Ref | Expression |
---|---|
ssuzfz | ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuzfz.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | 1 | sselda 3744 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
3 | ssuzfz.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | syl6eleq 2849 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | eluzel2 11904 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
7 | uzssz 11919 | . . . . . . . . . . . 12 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
8 | 3, 7 | eqsstri 3776 | . . . . . . . . . . 11 ⊢ 𝑍 ⊆ ℤ |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ⊆ ℤ) |
10 | 1, 9 | sstrd 3754 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
11 | 10 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
12 | ne0i 4064 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝐴 → 𝐴 ≠ ∅) | |
13 | 12 | adantl 473 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ≠ ∅) |
14 | ssuzfz.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
15 | 14 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ∈ Fin) |
16 | suprfinzcl 11704 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | |
17 | 11, 13, 15, 16 | syl3anc 1477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
18 | 11, 17 | sseldd 3745 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ) |
19 | 10 | sselda 3744 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
20 | 6, 18, 19 | 3jca 1123 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
21 | eluzle 11912 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
22 | 4, 21 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝑘) |
23 | zssre 11596 | . . . . . . . . . 10 ⊢ ℤ ⊆ ℝ | |
24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℤ ⊆ ℝ) |
25 | 10, 24 | sstrd 3754 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
26 | 25 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
27 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
28 | eqidd 2761 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )) | |
29 | 26, 15, 27, 28 | supfirege 11221 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < )) |
30 | 20, 22, 29 | jca32 559 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ sup(𝐴, ℝ, < )))) |
31 | elfz2 12546 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ sup(𝐴, ℝ, < )))) | |
32 | 30, 31 | sylibr 224 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
33 | 32 | ex 449 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))) |
34 | 33 | ralrimiv 3103 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
35 | dfss3 3733 | . 2 ⊢ (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) | |
36 | 34, 35 | sylibr 224 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 supcsup 8513 ℝcr 10147 < clt 10286 ≤ cle 10287 ℤcz 11589 ℤ≥cuz 11899 ...cfz 12539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 |
This theorem is referenced by: sge0isum 41165 |
Copyright terms: Public domain | W3C validator |