![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssunsn | Structured version Visualization version GIF version |
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ssunsn | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssunsn2 4493 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})))) | |
2 | ancom 452 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | eqss 3767 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 267 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ 𝐴 = 𝐵) |
5 | ancom 452 | . . . 4 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
6 | eqss 3767 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
7 | 5, 6 | bitr4i 267 | . . 3 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶})) |
8 | 4, 7 | orbi12i 900 | . 2 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
9 | 1, 8 | bitri 264 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∨ wo 836 = wceq 1631 ∪ cun 3721 ⊆ wss 3723 {csn 4316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-sn 4317 |
This theorem is referenced by: ssunpr 4498 |
Copyright terms: Public domain | W3C validator |