MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunpr Structured version   Visualization version   GIF version

Theorem ssunpr 4511
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunpr ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))

Proof of Theorem ssunpr
StepHypRef Expression
1 df-pr 4325 . . . . . 6 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21uneq2i 3908 . . . . 5 (𝐵 ∪ {𝐶, 𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷}))
3 unass 3914 . . . . 5 ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷}))
42, 3eqtr4i 2786 . . . 4 (𝐵 ∪ {𝐶, 𝐷}) = ((𝐵 ∪ {𝐶}) ∪ {𝐷})
54sseq2i 3772 . . 3 (𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))
65anbi2i 732 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ (𝐵𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})))
7 ssunsn2 4505 . 2 ((𝐵𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))))
8 ssunsn 4506 . . 3 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
9 un23 3916 . . . . . 6 ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = ((𝐵 ∪ {𝐷}) ∪ {𝐶})
109sseq2i 3772 . . . . 5 (𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶}))
1110anbi2i 732 . . . 4 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})))
12 ssunsn 4506 . . . 4 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶})))
134, 9eqtr2i 2784 . . . . . 6 ((𝐵 ∪ {𝐷}) ∪ {𝐶}) = (𝐵 ∪ {𝐶, 𝐷})
1413eqeq2i 2773 . . . . 5 (𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶}) ↔ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))
1514orbi2i 542 . . . 4 ((𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))
1611, 12, 153bitri 286 . . 3 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))
178, 16orbi12i 544 . 2 (((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))
186, 7, 173bitri 286 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wa 383   = wceq 1632  cun 3714  wss 3716  {csn 4322  {cpr 4324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-sn 4323  df-pr 4325
This theorem is referenced by:  sspr  4512  sstp  4513
  Copyright terms: Public domain W3C validator