![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssymdifcl | Structured version Visualization version GIF version |
Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by Richard Penner, 3-Jan-2020.) |
Ref | Expression |
---|---|
ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
Ref | Expression |
---|---|
sssymdifcl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
2 | vex 3343 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | difexg 4960 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∖ 𝑦) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∖ 𝑦) ∈ V |
5 | vex 3343 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | difexg 4960 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∖ 𝑥) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝑦 ∖ 𝑥) ∈ V |
8 | 4, 7 | unex 7121 | . 2 ⊢ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ V |
9 | sseq1 3767 | . 2 ⊢ (𝑧 = ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) → (𝑧 ⊆ 𝐵 ↔ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵)) | |
10 | sseq1 3767 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
11 | sseq1 3767 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
12 | ssdifss 3884 | . . 3 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∖ 𝑦) ⊆ 𝐵) | |
13 | ssdifss 3884 | . . 3 ⊢ (𝑦 ⊆ 𝐵 → (𝑦 ∖ 𝑥) ⊆ 𝐵) | |
14 | unss 3930 | . . . 4 ⊢ (((𝑥 ∖ 𝑦) ⊆ 𝐵 ∧ (𝑦 ∖ 𝑥) ⊆ 𝐵) ↔ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) | |
15 | 14 | biimpi 206 | . . 3 ⊢ (((𝑥 ∖ 𝑦) ⊆ 𝐵 ∧ (𝑦 ∖ 𝑥) ⊆ 𝐵) → ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) |
16 | 12, 13, 15 | syl2an 495 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) |
17 | 1, 8, 9, 10, 11, 16 | cllem0 38373 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ∀wral 3050 Vcvv 3340 ∖ cdif 3712 ∪ cun 3713 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-sn 4322 df-pr 4324 df-uni 4589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |