![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3730 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 589 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 3144 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ∃wrex 3043 ⊆ wss 3707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-rex 3048 df-in 3714 df-ss 3721 |
This theorem is referenced by: ssn0rex 4071 iunss1 4676 onfr 5916 moriotass 6795 frxp 7447 frfi 8362 fisupcl 8532 supgtoreq 8533 brwdom3 8644 unwdomg 8646 tcrank 8912 hsmexlem2 9433 pwfseqlem3 9666 grur1 9826 suplem1pr 10058 fimaxre2 11153 suprfinzcl 11676 lbzbi 11961 suprzub 11964 uzsupss 11965 zmin 11969 ssnn0fi 12970 elss2prb 13453 scshwfzeqfzo 13764 rexico 14284 rlim3 14420 rlimclim 14468 caurcvgr 14595 alzdvds 15236 bitsfzolem 15350 pclem 15737 0ram2 15919 0ramcl 15921 symgextfo 18034 lsmless1x 18251 lsmless2x 18252 dprdss 18620 ablfac2 18680 subrgdvds 18988 ssrest 21174 locfincf 21528 fbun 21837 fgss 21870 isucn2 22276 metust 22556 psmetutop 22565 lebnumlem3 22955 lebnum 22956 cfil3i 23259 cfilss 23260 fgcfil 23261 iscau4 23269 ivthle 23417 ivthle2 23418 lhop1lem 23967 lhop2 23969 ply1divex 24087 plyss 24146 dgrlem 24176 elqaa 24268 aannenlem2 24275 reeff1olem 24391 rlimcnp 24883 ftalem3 24992 pntlem3 25489 tgisline 25713 axcontlem2 26036 frgrwopreg1 27464 frgrwopreg2 27465 shless 28519 xlt2addrd 29824 ssnnssfz 29850 xreceu 29931 archirngz 30044 archiabllem1b 30047 locfinreflem 30208 crefss 30217 esumpcvgval 30441 sigaclci 30496 eulerpartlemgvv 30739 eulerpartlemgh 30741 signsply0 30929 iccllysconn 31531 frmin 32040 fgmin 32663 knoppndvlem18 32818 poimirlem26 33740 poimirlem30 33744 volsupnfl 33759 cover2 33813 filbcmb 33840 istotbnd3 33875 sstotbnd 33879 heibor1lem 33913 isdrngo2 34062 isdrngo3 34063 qsss1 34369 islsati 34776 paddss1 35598 paddss2 35599 hdmap14lem2a 37653 pellfundre 37939 pellfundge 37940 pellfundglb 37943 hbtlem3 38191 hbtlem5 38192 itgoss 38227 radcnvrat 39007 fiminre2 40084 uzubico 40290 uzubico2 40292 climleltrp 40403 fourierdlem20 40839 smflimlem2 41478 iccelpart 41871 fmtnofac2 41983 ssnn0ssfz 42629 pgrpgt2nabl 42649 |
Copyright terms: Public domain | W3C validator |