MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres Structured version   Visualization version   GIF version

Theorem ssres 5583
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 3982 . 2 (𝐴𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V)))
2 df-res 5279 . 2 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
3 df-res 5279 . 2 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
41, 2, 33sstr4g 3788 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3341  cin 3715  wss 3716   × cxp 5265  cres 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-v 3343  df-in 3723  df-ss 3730  df-res 5279
This theorem is referenced by:  imass1  5659  marypha1lem  8507  sspg  27914  ssps  27916  sspn  27922
  Copyright terms: Public domain W3C validator