![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssres | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
ssres | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3982 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5279 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5279 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3sstr4g 3788 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3341 ∩ cin 3715 ⊆ wss 3716 × cxp 5265 ↾ cres 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-in 3723 df-ss 3730 df-res 5279 |
This theorem is referenced by: imass1 5659 marypha1lem 8507 sspg 27914 ssps 27916 sspn 27922 |
Copyright terms: Public domain | W3C validator |