![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrelrn | Structured version Visualization version GIF version |
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
ssrelrn | ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5451 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌)) | |
2 | ssbr 4831 | . . . . . . . . . . 11 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎(𝐴 × 𝐵)𝑌)) | |
3 | brxp 5286 | . . . . . . . . . . . 12 ⊢ (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
4 | 3 | simplbi 485 | . . . . . . . . . . 11 ⊢ (𝑎(𝐴 × 𝐵)𝑌 → 𝑎 ∈ 𝐴) |
5 | 2, 4 | syl6 35 | . . . . . . . . . 10 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎 ∈ 𝐴)) |
6 | 5 | ancrd 541 | . . . . . . . . 9 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
7 | 6 | adantl 467 | . . . . . . . 8 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
8 | 7 | eximdv 1998 | . . . . . . 7 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
9 | 8 | ex 397 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
11 | 1, 10 | sylbid 230 | . . . 4 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
12 | 11 | pm2.43i 52 | . . 3 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
13 | 12 | impcom 394 | . 2 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) |
14 | df-rex 3067 | . 2 ⊢ (∃𝑎 ∈ 𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | |
15 | 13, 14 | sylibr 224 | 1 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∃wex 1852 ∈ wcel 2145 ∃wrex 3062 ⊆ wss 3723 class class class wbr 4787 × cxp 5248 ran crn 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-xp 5256 df-cnv 5258 df-dm 5260 df-rn 5261 |
This theorem is referenced by: incistruhgr 26195 |
Copyright terms: Public domain | W3C validator |