![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrankr1 | Structured version Visualization version GIF version |
Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ssrankr1 | ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | unir1 8849 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
3 | 1, 2 | eleqtrri 2838 | . . 3 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
4 | r1fnon 8803 | . . . . . 6 ⊢ 𝑅1 Fn On | |
5 | fndm 6151 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
7 | 6 | eleq2i 2831 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) |
8 | 7 | biimpri 218 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom 𝑅1) |
9 | rankr1clem 8856 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | |
10 | 3, 8, 9 | sylancr 698 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
11 | 10 | bicomd 213 | 1 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ∪ cuni 4588 dom cdm 5266 “ cima 5269 Oncon0 5884 Fn wfn 6044 ‘cfv 6049 𝑅1cr1 8798 rankcrnk 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 df-rank 8801 |
This theorem is referenced by: rankr1a 8872 |
Copyright terms: Public domain | W3C validator |