![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssralv2 | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3815 for two quantifiers. The proof of ssralv2 39262 was automatically generated by minimizing the automatically translated proof of ssralv2VD 39624. The automatic translation is by the tools program translatewithout_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssralv2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1995 | . 2 ⊢ Ⅎ𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) | |
2 | nfra1 3090 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 | |
3 | ssralv 3815 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) | |
4 | 3 | adantr 466 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
5 | df-ral 3066 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
6 | 4, 5 | syl6ib 241 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
7 | sp 2207 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
8 | 6, 7 | syl6 35 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
9 | ssralv 3815 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) | |
10 | 9 | adantl 467 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
11 | 8, 10 | syl6d 75 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑))) |
12 | 1, 2, 11 | ralrimd 3108 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∀wal 1629 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-ral 3066 df-in 3730 df-ss 3737 |
This theorem is referenced by: ordelordALT 39272 ordelordALTVD 39625 |
Copyright terms: Public domain | W3C validator |