Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2 Structured version   Visualization version   GIF version

Theorem ssralv2 39262
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3815 for two quantifiers. The proof of ssralv2 39262 was automatically generated by minimizing the automatically translated proof of ssralv2VD 39624. The automatic translation is by the tools program translatewithout_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2
StepHypRef Expression
1 nfv 1995 . 2 𝑥(𝐴𝐵𝐶𝐷)
2 nfra1 3090 . 2 𝑥𝑥𝐵𝑦𝐷 𝜑
3 ssralv 3815 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
43adantr 466 . . . . 5 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
5 df-ral 3066 . . . . 5 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
64, 5syl6ib 241 . . . 4 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)))
7 sp 2207 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
86, 7syl6 35 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐷 𝜑)))
9 ssralv 3815 . . . 4 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
109adantl 467 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
118, 10syl6d 75 . 2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐶 𝜑)))
121, 2, 11ralrimd 3108 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629  wcel 2145  wral 3061  wss 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-ral 3066  df-in 3730  df-ss 3737
This theorem is referenced by:  ordelordALT  39272  ordelordALTVD  39625
  Copyright terms: Public domain W3C validator