![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrab3 | Structured version Visualization version GIF version |
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssrab3.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Ref | Expression |
---|---|
ssrab3 | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab3.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | ssrab2 3720 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3668 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 {crab 2945 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-in 3614 df-ss 3621 |
This theorem is referenced by: usgrres 26245 frgrwopregbsn 27297 frgrwopreg1 27298 eulerpartlemgvv 30566 reprpmtf1o 30832 hgt750lemb 30862 hgt750leme 30864 bnj1212 30996 bnj213 31078 bnj1286 31213 bnj1312 31252 bnj1523 31265 |
Copyright terms: Public domain | W3C validator |