![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspz | Structured version Visualization version GIF version |
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspz.z | ⊢ 𝑍 = (0vec‘𝑈) |
sspz.q | ⊢ 𝑄 = (0vec‘𝑊) |
sspz.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspz.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
2 | 1 | sspnv 27890 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | eqid 2760 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | sspz.q | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 27798 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊)) |
6 | 5, 5 | jca 555 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
7 | 2, 6 | syl 17 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
8 | eqid 2760 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
9 | eqid 2760 | . . . 4 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
10 | 3, 8, 9, 1 | sspmval 27897 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
11 | 7, 10 | mpdan 705 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
12 | 2, 5 | syl 17 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑊)) |
13 | 3, 9, 4 | nvmid 27823 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
14 | 2, 12, 13 | syl2anc 696 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
15 | eqid 2760 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
16 | 15, 3, 1 | sspba 27891 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈)) |
17 | 16, 12 | sseldd 3745 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑈)) |
18 | sspz.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
19 | 15, 8, 18 | nvmid 27823 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
20 | 17, 19 | syldan 488 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
21 | 11, 14, 20 | 3eqtr3d 2802 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 NrmCVeccnv 27748 BaseSetcba 27750 0veccn0v 27752 −𝑣 cnsb 27753 SubSpcss 27885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-ltxr 10271 df-sub 10460 df-neg 10461 df-grpo 27656 df-gid 27657 df-ginv 27658 df-gdiv 27659 df-ablo 27708 df-vc 27723 df-nv 27756 df-va 27759 df-ba 27760 df-sm 27761 df-0v 27762 df-vs 27763 df-nmcv 27764 df-ssp 27886 |
This theorem is referenced by: hhshsslem2 28434 |
Copyright terms: Public domain | W3C validator |