MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsval Structured version   Visualization version   GIF version

Theorem sspsval 27916
Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y 𝑌 = (BaseSet‘𝑊)
ssps.s 𝑆 = ( ·𝑠OLD𝑈)
ssps.r 𝑅 = ( ·𝑠OLD𝑊)
ssps.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵))

Proof of Theorem sspsval
StepHypRef Expression
1 ssps.y . . . 4 𝑌 = (BaseSet‘𝑊)
2 ssps.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
3 ssps.r . . . 4 𝑅 = ( ·𝑠OLD𝑊)
4 ssps.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4ssps 27915 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))
65oveqd 6831 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑅𝐵) = (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵))
7 ovres 6966 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑌) → (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵) = (𝐴𝑆𝐵))
86, 7sylan9eq 2814 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139   × cxp 5264  cres 5268  cfv 6049  (class class class)co 6814  cc 10146  NrmCVeccnv 27769  BaseSetcba 27771   ·𝑠OLD cns 27772  SubSpcss 27906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-1st 7334  df-2nd 7335  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-nmcv 27785  df-ssp 27907
This theorem is referenced by:  sspmval  27918  minvecolem2  28061  hhshsslem2  28455
  Copyright terms: Public domain W3C validator