![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspsval | Structured version Visualization version GIF version |
Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssps.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
ssps.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ssps.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
ssps.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspsval | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssps.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | ssps.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | ssps.r | . . . 4 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
4 | ssps.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | ssps 27915 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) |
6 | 5 | oveqd 6831 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴𝑅𝐵) = (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵)) |
7 | ovres 6966 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌) → (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵) = (𝐴𝑆𝐵)) | |
8 | 6, 7 | sylan9eq 2814 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 × cxp 5264 ↾ cres 5268 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 NrmCVeccnv 27769 BaseSetcba 27771 ·𝑠OLD cns 27772 SubSpcss 27906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-1st 7334 df-2nd 7335 df-vc 27744 df-nv 27777 df-va 27780 df-ba 27781 df-sm 27782 df-0v 27783 df-nmcv 27785 df-ssp 27907 |
This theorem is referenced by: sspmval 27918 minvecolem2 28061 hhshsslem2 28455 |
Copyright terms: Public domain | W3C validator |