MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstri Structured version   Visualization version   GIF version

Theorem sspsstri 3859
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
sspsstri ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem sspsstri
StepHypRef Expression
1 or32 911 . 2 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
2 sspss 3856 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
3 sspss 3856 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
4 eqcom 2778 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
54orbi2i 898 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
63, 5bitri 264 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴𝐴 = 𝐵))
72, 6orbi12i 900 . . 3 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
8 orordir 915 . . 3 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
97, 8bitr4i 267 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵))
10 df-3or 1072 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
111, 9, 103bitr4i 292 1 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 836  w3o 1070   = wceq 1631  wss 3723  wpss 3724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-ne 2944  df-in 3730  df-ss 3737  df-pss 3739
This theorem is referenced by:  ordtri3or  5897  sorpss  7093  sorpssi  7094  funpsstri  32001
  Copyright terms: Public domain W3C validator