MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspnval Structured version   Visualization version   GIF version

Theorem sspnval 27923
Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y 𝑌 = (BaseSet‘𝑊)
sspn.n 𝑁 = (normCV𝑈)
sspn.m 𝑀 = (normCV𝑊)
sspn.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspnval ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))

Proof of Theorem sspnval
StepHypRef Expression
1 sspn.y . . . . 5 𝑌 = (BaseSet‘𝑊)
2 sspn.n . . . . 5 𝑁 = (normCV𝑈)
3 sspn.m . . . . 5 𝑀 = (normCV𝑊)
4 sspn.h . . . . 5 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspn 27922 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 = (𝑁𝑌))
65fveq1d 6356 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑀𝐴) = ((𝑁𝑌)‘𝐴))
7 fvres 6370 . . 3 (𝐴𝑌 → ((𝑁𝑌)‘𝐴) = (𝑁𝐴))
86, 7sylan9eq 2815 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
983impa 1101 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  cres 5269  cfv 6050  NrmCVeccnv 27770  BaseSetcba 27772  normCVcnmcv 27776  SubSpcss 27907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-1st 7335  df-2nd 7336  df-vc 27745  df-nv 27778  df-va 27781  df-ba 27782  df-sm 27783  df-0v 27784  df-nmcv 27786  df-ssp 27908
This theorem is referenced by:  sspimsval  27924  sspph  28041
  Copyright terms: Public domain W3C validator