MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspimsval Structured version   Visualization version   GIF version

Theorem sspimsval 27933
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspimsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))

Proof of Theorem sspimsval
StepHypRef Expression
1 sspims.h . . . . . 6 𝐻 = (SubSp‘𝑈)
21sspnv 27921 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspims.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
4 eqid 2771 . . . . . . 7 ( −𝑣𝑊) = ( −𝑣𝑊)
53, 4nvmcl 27841 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
653expb 1113 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
72, 6sylan 569 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
8 eqid 2771 . . . . . 6 (normCV𝑈) = (normCV𝑈)
9 eqid 2771 . . . . . 6 (normCV𝑊) = (normCV𝑊)
103, 8, 9, 1sspnval 27932 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
11103expa 1111 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
127, 11syldan 579 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
13 eqid 2771 . . . . 5 ( −𝑣𝑈) = ( −𝑣𝑈)
143, 13, 4, 1sspmval 27928 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) = (𝐴( −𝑣𝑈)𝐵))
1514fveq2d 6337 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
1612, 15eqtrd 2805 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
17 sspims.c . . . . 5 𝐶 = (IndMet‘𝑊)
183, 4, 9, 17imsdval 27881 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
19183expb 1113 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
202, 19sylan 569 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
21 eqid 2771 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2221, 3, 1sspba 27922 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2322sseld 3751 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2422sseld 3751 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
2523, 24anim12d 596 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
2625imp 393 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
27 sspims.d . . . . . 6 𝐷 = (IndMet‘𝑈)
2821, 13, 8, 27imsdval 27881 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
29283expb 1113 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3029adantlr 694 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3126, 30syldan 579 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3216, 20, 313eqtr4d 2815 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  NrmCVeccnv 27779  BaseSetcba 27781  𝑣 cnsb 27784  normCVcnmcv 27785  IndMetcims 27786  SubSpcss 27916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-ltxr 10285  df-sub 10474  df-neg 10475  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-ssp 27917
This theorem is referenced by:  sspims  27934
  Copyright terms: Public domain W3C validator