![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version |
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspba.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
sspba.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspba.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspba | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | eqid 2760 | . . . . . 6 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
3 | eqid 2760 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2760 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
5 | eqid 2760 | . . . . . 6 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
6 | eqid 2760 | . . . . . 6 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
7 | sspba.h | . . . . . 6 ⊢ 𝐻 = (SubSp‘𝑈) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 27909 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
9 | 8 | simplbda 655 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))) |
10 | 9 | simp1d 1137 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈)) |
11 | rnss 5509 | . . 3 ⊢ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) |
13 | sspba.y | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | 13, 2 | bafval 27789 | . 2 ⊢ 𝑌 = ran ( +𝑣 ‘𝑊) |
15 | sspba.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
16 | 15, 1 | bafval 27789 | . 2 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
17 | 12, 14, 16 | 3sstr4g 3787 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ran crn 5267 ‘cfv 6049 NrmCVeccnv 27769 +𝑣 cpv 27770 BaseSetcba 27771 ·𝑠OLD cns 27772 normCVcnmcv 27775 SubSpcss 27906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-oprab 6818 df-1st 7334 df-2nd 7335 df-vc 27744 df-nv 27777 df-va 27780 df-ba 27781 df-sm 27782 df-nmcv 27785 df-ssp 27907 |
This theorem is referenced by: sspg 27913 ssps 27915 sspmlem 27917 sspmval 27918 sspz 27920 sspn 27921 sspimsval 27923 sspph 28040 minvecolem1 28060 minvecolem2 28061 minvecolem3 28062 minvecolem4b 28064 minvecolem4 28066 minvecolem5 28067 minvecolem6 28068 minvecolem7 28069 |
Copyright terms: Public domain | W3C validator |