MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssorduni Structured version   Visualization version   GIF version

Theorem ssorduni 7027
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni (𝐴 ⊆ On → Ord 𝐴)

Proof of Theorem ssorduni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4472 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
2 ssel 3630 . . . . . . . . 9 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
3 onelss 5804 . . . . . . . . 9 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
42, 3syl6 35 . . . . . . . 8 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥𝑦)))
5 anc2r 578 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑦𝑥𝑦)) → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
64, 5syl 17 . . . . . . 7 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
7 ssuni 4491 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥 𝐴)
86, 7syl8 76 . . . . . 6 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 𝐴)))
98rexlimdv 3059 . . . . 5 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 𝐴))
101, 9syl5bi 232 . . . 4 (𝐴 ⊆ On → (𝑥 𝐴𝑥 𝐴))
1110ralrimiv 2994 . . 3 (𝐴 ⊆ On → ∀𝑥 𝐴𝑥 𝐴)
12 dftr3 4789 . . 3 (Tr 𝐴 ↔ ∀𝑥 𝐴𝑥 𝐴)
1311, 12sylibr 224 . 2 (𝐴 ⊆ On → Tr 𝐴)
14 onelon 5786 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1514ex 449 . . . . . 6 (𝑦 ∈ On → (𝑥𝑦𝑥 ∈ On))
162, 15syl6 35 . . . . 5 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 ∈ On)))
1716rexlimdv 3059 . . . 4 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 ∈ On))
181, 17syl5bi 232 . . 3 (𝐴 ⊆ On → (𝑥 𝐴𝑥 ∈ On))
1918ssrdv 3642 . 2 (𝐴 ⊆ On → 𝐴 ⊆ On)
20 ordon 7024 . . 3 Ord On
21 trssord 5778 . . . 4 ((Tr 𝐴 𝐴 ⊆ On ∧ Ord On) → Ord 𝐴)
22213exp 1283 . . 3 (Tr 𝐴 → ( 𝐴 ⊆ On → (Ord On → Ord 𝐴)))
2320, 22mpii 46 . 2 (Tr 𝐴 → ( 𝐴 ⊆ On → Ord 𝐴))
2413, 19, 23sylc 65 1 (𝐴 ⊆ On → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wral 2941  wrex 2942  wss 3607   cuni 4468  Tr wtr 4785  Ord word 5760  Oncon0 5761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765
This theorem is referenced by:  ssonuni  7028  ssonprc  7034  orduni  7036  onsucuni  7070  limuni3  7094  onfununi  7483  tfrlem8  7525  onssnum  8901  unialeph  8962  cfslbn  9127  hsmexlem1  9286  inaprc  9696  bdayimaon  31968  nosupbday  31976  noetalem3  31990  noetalem4  31991
  Copyright terms: Public domain W3C validator