MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssoprab2 Structured version   Visualization version   GIF version

Theorem ssoprab2 6858
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 5134. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2 (∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})

Proof of Theorem ssoprab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
21anim2d 599 . . . . . 6 ((𝜑𝜓) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)))
32aleximi 1907 . . . . 5 (∀𝑧(𝜑𝜓) → (∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)))
43aleximi 1907 . . . 4 (∀𝑦𝑧(𝜑𝜓) → (∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)))
54aleximi 1907 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)))
65ss2abdv 3824 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) → {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ⊆ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)})
7 df-oprab 6797 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
8 df-oprab 6797 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
96, 7, 83sstr4g 3795 1 (∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629   = wceq 1631  wex 1852  {cab 2757  wss 3723  cop 4322  {coprab 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-in 3730  df-ss 3737  df-oprab 6797
This theorem is referenced by:  ssoprab2b  6859  joinfval  17209  meetfval  17223
  Copyright terms: Public domain W3C validator