MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2 Structured version   Visualization version   GIF version

Theorem ssopab2 5030
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
Assertion
Ref Expression
ssopab2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})

Proof of Theorem ssopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
21anim2d 588 . . . . 5 ((𝜑𝜓) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32aleximi 1799 . . . 4 (∀𝑦(𝜑𝜓) → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43aleximi 1799 . . 3 (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
54ss2abdv 3708 . 2 (∀𝑥𝑦(𝜑𝜓) → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
6 df-opab 4746 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
7 df-opab 4746 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
85, 6, 73sstr4g 3679 1 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521   = wceq 1523  wex 1744  {cab 2637  wss 3607  cop 4216  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-in 3614  df-ss 3621  df-opab 4746
This theorem is referenced by:  ssopab2b  5031  ssopab2i  5032  ssopab2dv  5033  opabbrex  6737
  Copyright terms: Public domain W3C validator