![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnum | Structured version Visualization version GIF version |
Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ssnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8159 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | imp 393 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ≼ 𝐴) |
3 | numdom 9065 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | |
4 | 2, 3 | syldan 579 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4787 dom cdm 5250 ≼ cdom 8111 cardccrd 8965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-wrecs 7563 df-recs 7625 df-er 7900 df-en 8114 df-dom 8115 df-card 8969 |
This theorem is referenced by: onssnum 9067 numacn 9076 dfac12r 9174 infdif 9237 fin23lem22 9355 ttukey2g 9544 smobeth 9614 canthnumlem 9676 gchac 9709 tskurn 9817 lbsextlem4 19376 1stcrestlem 21476 2ndcsep 21483 filssufilg 21935 ptcmplem2 22077 ptcmplem3 22078 poimirlem32 33774 ttac 38129 |
Copyright terms: Public domain | W3C validator |