![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnnfi | Structured version Visualization version GIF version |
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
ssnnfi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 3739 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | pssnn 8219 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | |
3 | elnn 7117 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
4 | 3 | expcom 450 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
5 | 4 | anim1d 587 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥) → (𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥))) |
6 | 5 | reximdv2 3043 | . . . . . 6 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
8 | 2, 7 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
9 | eleq1 2718 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω)) | |
10 | 9 | biimparc 503 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω) |
11 | enrefg 8029 | . . . . . 6 ⊢ (𝐵 ∈ ω → 𝐵 ≈ 𝐵) | |
12 | 11 | ancli 573 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵)) |
13 | breq2 4689 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≈ 𝑥 ↔ 𝐵 ≈ 𝐵)) | |
14 | 13 | rspcev 3340 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
15 | 10, 12, 14 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
16 | 8, 15 | jaodan 843 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
17 | 1, 16 | sylan2b 491 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) |
18 | isfi 8021 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
19 | 17, 18 | sylibr 224 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ⊆ wss 3607 ⊊ wpss 3608 class class class wbr 4685 ωcom 7107 ≈ cen 7994 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-om 7108 df-en 7998 df-fin 8001 |
This theorem is referenced by: ssfi 8221 0fin 8229 en1eqsn 8231 isfinite2 8259 pwfi 8302 wofib 8491 infpwfien 8923 fin67 9255 hashcard 13184 rexpen 15001 |
Copyright terms: Public domain | W3C validator |