MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnmz Structured version   Visualization version   GIF version

Theorem ssnmz 17844
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
ssnmz (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem ssnmz
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6 𝑋 = (Base‘𝐺)
21subgss 17803 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32sselda 3752 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑋)
4 simpll 750 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 17807 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp)
74, 2syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆𝑋)
8 simplrl 762 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑆)
97, 8sseldd 3753 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑋)
10 nmzsubg.3 . . . . . . . . . . . . 13 + = (+g𝐺)
11 eqid 2771 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
12 eqid 2771 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
131, 10, 11, 12grplinv 17676 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
146, 9, 13syl2anc 573 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1514oveq1d 6808 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
1612subginvcl 17811 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
174, 8, 16syl2anc 573 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
187, 17sseldd 3753 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑋)
19 simplrr 763 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑋)
201, 10grpass 17639 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
216, 18, 9, 19, 20syl13anc 1478 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
221, 10, 11grplid 17660 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
236, 19, 22syl2anc 573 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2415, 21, 233eqtr3d 2813 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
25 simpr 471 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
2610subgcl 17812 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
274, 17, 25, 26syl3anc 1476 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
2824, 27eqeltrrd 2851 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑆)
2910subgcl 17812 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑆𝑧𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
304, 28, 8, 29syl3anc 1476 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
31 simpll 750 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
32 simplrl 762 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑆)
3331, 5syl 17 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp)
34 simplrr 763 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑋)
3531, 32, 3syl2anc 573 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑋)
36 eqid 2771 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
371, 10, 36grppncan 17714 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑧𝑋) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
3833, 34, 35, 37syl3anc 1476 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
39 simpr 471 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
4036subgsubcl 17813 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆𝑧𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4131, 39, 32, 40syl3anc 1476 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4238, 41eqeltrrd 2851 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑆)
4310subgcl 17812 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆𝑤𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4431, 32, 42, 43syl3anc 1476 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4530, 44impbida 802 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4645anassrs 458 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4746ralrimiva 3115 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
48 elnmz.1 . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
4948elnmz 17841 . . . 4 (𝑧𝑁 ↔ (𝑧𝑋 ∧ ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
503, 47, 49sylanbrc 572 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑁)
5150ex 397 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧𝑆𝑧𝑁))
5251ssrdv 3758 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  wss 3723  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  SubGrpcsubg 17796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799
This theorem is referenced by:  nmznsg  17846  sylow3lem6  18254
  Copyright terms: Public domain W3C validator