MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnelpssd Structured version   Visualization version   GIF version

Theorem ssnelpssd 3861
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3860. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssnelpssd.1 (𝜑𝐴𝐵)
ssnelpssd.2 (𝜑𝐶𝐵)
ssnelpssd.3 (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
ssnelpssd (𝜑𝐴𝐵)

Proof of Theorem ssnelpssd
StepHypRef Expression
1 ssnelpssd.2 . 2 (𝜑𝐶𝐵)
2 ssnelpssd.3 . 2 (𝜑 → ¬ 𝐶𝐴)
3 ssnelpssd.1 . . 3 (𝜑𝐴𝐵)
4 ssnelpss 3860 . . 3 (𝐴𝐵 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))
53, 4syl 17 . 2 (𝜑 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))
61, 2, 5mp2and 717 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 2139  wss 3715  wpss 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1854  df-cleq 2753  df-clel 2756  df-ne 2933  df-pss 3731
This theorem is referenced by:  isfin4-3  9349  canth4  9681  mrieqv2d  16521  symggen  18110  pgpfac1lem1  18693  pgpfaclem2  18701
  Copyright terms: Public domain W3C validator