![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4118 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 449 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 2953 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ≠ wne 2932 ⊆ wss 3715 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-v 3342 df-dif 3718 df-in 3722 df-ss 3729 df-nul 4059 |
This theorem is referenced by: unixp0 5830 frxp 7455 onfununi 7607 carddomi2 8986 fin23lem21 9353 wunex2 9752 vdwmc2 15885 gsumval2 17481 subgint 17819 subrgint 19004 hausnei2 21359 fbun 21845 fbfinnfr 21846 filuni 21890 isufil2 21913 ufileu 21924 filufint 21925 fmfnfm 21963 hausflim 21986 flimclslem 21989 fclsneii 22022 fclsbas 22026 fclsrest 22029 fclscf 22030 fclsfnflim 22032 flimfnfcls 22033 fclscmp 22035 ufilcmp 22037 isfcf 22039 fcfnei 22040 clssubg 22113 ustfilxp 22217 metustfbas 22563 restmetu 22576 reperflem 22822 metdseq0 22858 relcmpcmet 23315 bcthlem5 23325 minveclem4a 23401 dvlip 23955 wlkvtxiedg 26730 imadifxp 29721 bnj970 31324 frmin 32048 neibastop1 32660 neibastop2 32662 heibor1lem 33921 isnumbasabl 38178 dfacbasgrp 38180 ioossioobi 40246 islptre 40354 stoweidlem35 40755 stoweidlem39 40759 fourierdlem46 40872 nzerooringczr 42582 |
Copyright terms: Public domain | W3C validator |