Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ssjo Structured version   Visualization version   GIF version

Theorem ssjo 28434
 Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ssjo (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)

Proof of Theorem ssjo
StepHypRef Expression
1 ocss 28272 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
2 sshjval 28337 . . 3 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
31, 2mpdan 703 . 2 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
4 ssun1 3809 . . . . . . . 8 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴))
51ancli 573 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
6 unss 3820 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
75, 6sylib 208 . . . . . . . . 9 (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
8 occon 28274 . . . . . . . . 9 ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
97, 8mpdan 703 . . . . . . . 8 (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
104, 9mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))
11 ssun2 3810 . . . . . . . 8 (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴))
12 occon 28274 . . . . . . . . 9 (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
131, 7, 12syl2anc 694 . . . . . . . 8 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
1411, 13mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))
1510, 14ssind 3870 . . . . . 6 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))))
16 ocsh 28270 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
17 ocin 28283 . . . . . . 7 ((⊥‘𝐴) ∈ S → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1816, 17syl 17 . . . . . 6 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1915, 18sseqtrd 3674 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0)
20 ocsh 28270 . . . . . 6 ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S )
21 sh0le 28427 . . . . . 6 ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
227, 20, 213syl 18 . . . . 5 (𝐴 ⊆ ℋ → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
2319, 22eqssd 3653 . . . 4 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0)
2423fveq2d 6233 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0))
25 choc0 28313 . . 3 (⊥‘0) = ℋ
2624, 25syl6eq 2701 . 2 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ)
273, 26eqtrd 2685 1 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ‘cfv 5926  (class class class)co 6690   ℋchil 27904   Sℋ csh 27913  ⊥cort 27915   ∨ℋ chj 27918  0ℋc0h 27920 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-lm 21081  df-haus 21167  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-hnorm 27953  df-hvsub 27956  df-hlim 27957  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-chj 28297 This theorem is referenced by:  chjoi  28475
 Copyright terms: Public domain W3C validator