![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssiun2sf | Structured version Visualization version GIF version |
Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
Ref | Expression |
---|---|
ssiun2sf.1 | ⊢ Ⅎ𝑥𝐴 |
ssiun2sf.2 | ⊢ Ⅎ𝑥𝐶 |
ssiun2sf.3 | ⊢ Ⅎ𝑥𝐷 |
ssiun2sf.4 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ssiun2sf | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun2sf.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
2 | ssiun2sf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | nfel 2806 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ 𝐴 |
4 | ssiun2sf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
5 | nfiu1 4582 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
6 | 4, 5 | nfss 3629 | . . . 4 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
7 | 3, 6 | nfim 1865 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
8 | eleq1 2718 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
9 | ssiun2sf.4 | . . . . 5 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
10 | 9 | sseq1d 3665 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
11 | 8, 10 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵))) |
12 | ssiun2 4595 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
13 | 1, 7, 11, 12 | vtoclgf 3295 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
14 | 13 | pm2.43i 52 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ⊆ wss 3607 ∪ ciun 4552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-in 3614 df-ss 3621 df-iun 4554 |
This theorem is referenced by: iundisj2f 29529 esum2dlem 30282 voliune 30420 volfiniune 30421 |
Copyright terms: Public domain | W3C validator |