![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
3 | nfiu1 4703 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
4 | 2, 3 | nfss 3738 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
6 | 5 | sseq1d 3774 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
7 | ssiun2 4716 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 1, 4, 6, 7 | vtoclgaf 3412 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 ∪ ciun 4673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-v 3343 df-in 3723 df-ss 3730 df-iun 4675 |
This theorem is referenced by: onfununi 7609 oaordi 7798 omordi 7818 dffi3 8505 alephordi 9108 domtriomlem 9477 pwxpndom2 9700 wunex2 9773 imasaddvallem 16412 imasvscaval 16421 iundisj2 23538 voliunlem1 23539 volsup 23545 iundisj2fi 29887 bnj906 31329 bnj1137 31392 bnj1408 31433 cvmliftlem10 31605 cvmliftlem13 31607 sstotbnd2 33905 mapdrvallem3 37456 fvmptiunrelexplb0d 38497 fvmptiunrelexplb1d 38499 corclrcl 38520 trclrelexplem 38524 corcltrcl 38552 cotrclrcl 38555 iunincfi 39790 iundjiunlem 41198 meaiuninc3v 41223 caratheodorylem1 41265 ovnhoilem1 41340 |
Copyright terms: Public domain | W3C validator |