![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version |
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
Ref | Expression |
---|---|
ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
Ref | Expression |
---|---|
ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
4 | ssin 3978 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | mpbi 220 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∩ cin 3714 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 |
This theorem is referenced by: inv1 4113 hartogslem1 8614 xptrrel 13940 fbasrn 21909 limciun 23877 hlimcaui 28423 chdmm1i 28666 chm0i 28679 ledii 28725 lejdii 28727 mayetes3i 28918 mdslj2i 29509 mdslmd2i 29519 sumdmdlem2 29608 sigapildsys 30555 ssoninhaus 32774 bj-disj2r 33337 idinxpres 34430 icomnfinre 40300 fouriersw 40969 sge0split 41147 |
Copyright terms: Public domain | W3C validator |