![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 3978 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 208 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∩ cin 3714 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 |
This theorem is referenced by: mreexexlem3d 16508 isacs1i 16519 rescabs 16694 funcres2c 16762 lsmmod 18288 gsumzres 18510 gsumzsubmcl 18518 gsum2d 18571 issubdrg 19007 lspdisj 19327 mplind 19704 ntrin 21067 elcls 21079 neitr 21186 restcls 21187 lmss 21304 xkoinjcn 21692 trfg 21896 trust 22234 utoptop 22239 restutop 22242 isngp2 22602 lebnumii 22966 causs 23296 dvreslem 23872 c1lip3 23961 ssjo 28615 dmdbr5 29476 mdslj2i 29488 mdsl2bi 29491 mdslmd1lem2 29494 mdsymlem5 29575 difininv 29661 bnj1286 31394 mclsind 31774 neiin 32633 topmeet 32665 fnemeet2 32668 bj-restpw 33351 bj-restb 33353 bj-restuni2 33357 idresssidinxp 34403 pmod1i 35637 dihmeetlem1N 37081 dihglblem5apreN 37082 dochdmj1 37181 mapdin 37453 baerlem3lem2 37501 baerlem5alem2 37502 baerlem5blem2 37503 trrelind 38459 isotone2 38849 nzin 39019 inmap 39900 islptre 40354 limccog 40355 limcresiooub 40377 limcresioolb 40378 limsupresxr 40501 liminfresxr 40502 liminfvalxr 40518 fourierdlem48 40874 fourierdlem49 40875 fourierdlem113 40939 pimiooltgt 41427 pimdecfgtioc 41431 pimincfltioc 41432 pimdecfgtioo 41433 pimincfltioo 41434 sssmf 41453 smflimlem2 41486 smfsuplem1 41523 setrec2fun 42949 |
Copyright terms: Public domain | W3C validator |