Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinc Structured version   Visualization version   GIF version

Theorem ssinc 39781
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssinc.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssinc.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
Assertion
Ref Expression
ssinc (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssinc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssinc.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 11904 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 11909 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 555 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 11912 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 11694 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 10806 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1123 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 555 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 id 22 . 2 (𝜑𝜑)
14 fveq2 6353 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1514sseq2d 3774 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1615imbi2d 329 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
17 fveq2 6353 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817sseq2d 3774 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑚)))
1918imbi2d 329 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))))
20 fveq2 6353 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2120sseq2d 3774 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1))))
2221imbi2d 329 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
23 fveq2 6353 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2423sseq2d 3774 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑁)))
2524imbi2d 329 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))))
26 ssid 3765 . . . . 5 (𝐹𝑀) ⊆ (𝐹𝑀)
2726a1i 11 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2827a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
29 simpr 479 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → 𝜑)
30 simpl 474 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)))
31 pm3.35 612 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))) → (𝐹𝑀) ⊆ (𝐹𝑚))
3229, 30, 31syl2anc 696 . . . . . 6 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
33323adant1 1125 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
34 simpr 479 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
35 simplll 815 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
36 simplr1 1261 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
37 simplr2 1263 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3835, 36, 373jca 1123 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
39 eluz2 11905 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
4038, 39sylibr 224 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
41 simpllr 817 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
42 simplr3 1265 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
4340, 41, 423jca 1123 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
44 elfzo2 12687 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
4543, 44sylibr 224 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
46 ssinc.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4734, 45, 46syl2anc 696 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
48473adant2 1126 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4933, 48sstrd 3754 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))
50493exp 1113 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
5116, 19, 22, 25, 28, 50fzind 11687 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁)))
5212, 13, 51sylc 65 1 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wss 3715   class class class wbr 4804  cfv 6049  (class class class)co 6814  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cz 11589  cuz 11899  ..^cfzo 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680
This theorem is referenced by:  iunincfi  39789  meaiuninc3v  41222
  Copyright terms: Public domain W3C validator