MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssimaex Structured version   Visualization version   GIF version

Theorem ssimaex 6250
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1 𝐴 ∈ V
Assertion
Ref Expression
ssimaex ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ssimaex
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5407 . . . . 5 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21imaeq2i 5452 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹))
3 imadmres 5615 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹𝐴)
42, 3eqtr3i 2644 . . 3 (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹𝐴)
54sseq2i 3622 . 2 (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹𝐴))
6 ssrab2 3679 . . . 4 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)
7 ssel2 3590 . . . . . . . . 9 ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
87adantll 749 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
9 fvelima 6235 . . . . . . . . . . . 12 ((Fun 𝐹𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧)
109ex 450 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
1110adantr 481 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
12 eleq1a 2694 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → ((𝐹𝑤) = 𝑧 → (𝐹𝑤) ∈ 𝐵))
1312anim2d 588 . . . . . . . . . . . . . . 15 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵)))
14 fveq2 6178 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1514eleq1d 2684 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝐹𝑦) ∈ 𝐵 ↔ (𝐹𝑤) ∈ 𝐵))
1615elrab 3357 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵))
1713, 16syl6ibr 242 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
18 simpr 477 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧))
2017, 19jcad 555 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∧ (𝐹𝑤) = 𝑧)))
2120reximdv2 3011 . . . . . . . . . . . 12 (𝑧𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2221adantl 482 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
23 funfn 5906 . . . . . . . . . . . . 13 (Fun 𝐹𝐹 Fn dom 𝐹)
24 inss2 3826 . . . . . . . . . . . . . . 15 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
256, 24sstri 3604 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹
26 fvelimab 6240 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2725, 26mpan2 706 . . . . . . . . . . . . 13 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2823, 27sylbi 207 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2928adantr 481 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
3022, 29sylibrd 249 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3111, 30syld 47 . . . . . . . . 9 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3231adantlr 750 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
338, 32mpd 15 . . . . . . 7 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
3433ex 450 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
35 fvelima 6235 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧)
3635ex 450 . . . . . . . 8 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
37 eleq1 2687 . . . . . . . . . . . 12 ((𝐹𝑤) = 𝑧 → ((𝐹𝑤) ∈ 𝐵𝑧𝐵))
3837biimpcd 239 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝐵 → ((𝐹𝑤) = 𝑧𝑧𝐵))
3938adantl 482 . . . . . . . . . 10 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵) → ((𝐹𝑤) = 𝑧𝑧𝐵))
4016, 39sylbi 207 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝐹𝑤) = 𝑧𝑧𝐵))
4140rexlimiv 3023 . . . . . . . 8 (∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧𝑧𝐵)
4236, 41syl6 35 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4342adantr 481 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4434, 43impbid 202 . . . . 5 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
4544eqrdv 2618 . . . 4 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
46 ssimaex.1 . . . . . . 7 𝐴 ∈ V
4746inex1 4790 . . . . . 6 (𝐴 ∩ dom 𝐹) ∈ V
4847rabex 4804 . . . . 5 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∈ V
49 sseq1 3618 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)))
50 imaeq2 5450 . . . . . . 7 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐹𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
5150eqeq2d 2630 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐵 = (𝐹𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
5249, 51anbi12d 746 . . . . 5 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))))
5348, 52spcev 3295 . . . 4 (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
546, 45, 53sylancr 694 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
55 inss1 3825 . . . . . 6 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
56 sstr 3603 . . . . . 6 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥𝐴)
5755, 56mpan2 706 . . . . 5 (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥𝐴)
5857anim1i 591 . . . 4 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → (𝑥𝐴𝐵 = (𝐹𝑥)))
5958eximi 1760 . . 3 (∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
6054, 59syl 17 . 2 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
615, 60sylan2br 493 1 ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wrex 2910  {crab 2913  Vcvv 3195  cin 3566  wss 3567  dom cdm 5104  cres 5106  cima 5107  Fun wfun 5870   Fn wfn 5871  cfv 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-fv 5884
This theorem is referenced by:  ssimaexg  6251
  Copyright terms: Public domain W3C validator