![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2912 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ssiinf 4701 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wral 3060 ⊆ wss 3721 ∩ ciin 4653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-v 3351 df-in 3728 df-ss 3735 df-iin 4655 |
This theorem is referenced by: cflim2 9286 ptbasfi 21604 limciun 23877 clsint2 32655 fnemeet2 32693 dihglblem4 37100 dihglblem6 37143 iooiinicc 40281 iooiinioc 40295 iinhoiicc 41402 smfsuplem1 41531 |
Copyright terms: Public domain | W3C validator |