MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssidcn Structured version   Visualization version   GIF version

Theorem ssidcn 21182
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
ssidcn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))

Proof of Theorem ssidcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 21162 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
2 f1oi 6287 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of 6250 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋𝑋
54biantrur 528 . . 3 (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
61, 5syl6bbr 278 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
7 cnvresid 6081 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
87imaeq1i 5573 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
9 elssuni 4575 . . . . . . . . 9 (𝑥𝐾𝑥 𝐾)
109adantl 473 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥 𝐾)
11 toponuni 20842 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
1211ad2antlr 765 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑋 = 𝐾)
1310, 12sseqtr4d 3748 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥𝑋)
14 resiima 5590 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
168, 15syl5eq 2770 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1716eleq1d 2788 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
1817ralbidva 3087 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥𝐾 𝑥𝐽))
19 dfss3 3698 . . 3 (𝐾𝐽 ↔ ∀𝑥𝐾 𝑥𝐽)
2018, 19syl6bbr 278 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝐾𝐽))
216, 20bitrd 268 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wral 3014  wss 3680   cuni 4544   I cid 5127  ccnv 5217  cres 5220  cima 5221  wf 5997  1-1-ontowf1o 6000  cfv 6001  (class class class)co 6765  TopOnctopon 20838   Cn ccn 21151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-map 7976  df-top 20822  df-topon 20839  df-cn 21154
This theorem is referenced by:  idcn  21184  sshauslem  21299
  Copyright terms: Public domain W3C validator