![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sshjval | Structured version Visualization version GIF version |
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sshjval | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 28161 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 4973 | . 2 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
3 | 1 | elpw2 4973 | . 2 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
4 | uneq12 3901 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
5 | 4 | fveq2d 6352 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(𝑥 ∪ 𝑦)) = (⊥‘(𝐴 ∪ 𝐵))) |
6 | 5 | fveq2d 6352 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (⊥‘(⊥‘(𝑥 ∪ 𝑦))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
7 | df-chj 28474 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | |
8 | fvex 6358 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ∈ V | |
9 | 6, 7, 8 | ovmpt2a 6952 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
10 | 2, 3, 9 | syl2anbr 498 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∪ cun 3709 ⊆ wss 3711 𝒫 cpw 4298 ‘cfv 6045 (class class class)co 6809 ℋchil 28081 ⊥cort 28092 ∨ℋ chj 28095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-hilex 28161 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-iota 6008 df-fun 6047 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-chj 28474 |
This theorem is referenced by: shjval 28515 sshjval3 28518 sshjcl 28519 sshjval2 28575 ssjo 28611 sshhococi 28710 |
Copyright terms: Public domain | W3C validator |