MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sshauslem Structured version   Visualization version   GIF version

Theorem sshauslem 21378
Description: Lemma for sshaus 21381 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
t1sep.1 𝑋 = 𝐽
sshauslem.2 (𝐽𝐴𝐽 ∈ Top)
sshauslem.3 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
sshauslem ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)

Proof of Theorem sshauslem
StepHypRef Expression
1 simp1 1131 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐴)
2 f1oi 6335 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of1 6297 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋1-1𝑋)
42, 3mp1i 13 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋):𝑋1-1𝑋)
5 simp3 1133 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐾)
6 simp2 1132 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
7 sshauslem.2 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
873ad2ant1 1128 . . . . 5 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ Top)
9 t1sep.1 . . . . . 6 𝑋 = 𝐽
109toptopon 20924 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
118, 10sylib 208 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
12 ssidcn 21261 . . . 4 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
136, 11, 12syl2anc 696 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
145, 13mpbird 247 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽))
15 sshauslem.3 . 2 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
161, 4, 14, 15syl3anc 1477 1 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  wss 3715   cuni 4588   I cid 5173  cres 5268  1-1wf1 6046  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  Topctop 20900  TopOnctopon 20917   Cn ccn 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-map 8025  df-top 20901  df-topon 20918  df-cn 21233
This theorem is referenced by:  sst0  21379  sst1  21380  sshaus  21381
  Copyright terms: Public domain W3C validator