![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sshauslem | Structured version Visualization version GIF version |
Description: Lemma for sshaus 21381 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
sshauslem.2 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
sshauslem.3 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
Ref | Expression |
---|---|
sshauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6335 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1of1 6297 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–1-1→𝑋) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋):𝑋–1-1→𝑋) |
5 | simp3 1133 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ⊆ 𝐾) | |
6 | simp2 1132 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ (TopOn‘𝑋)) | |
7 | sshauslem.2 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
8 | 7 | 3ad2ant1 1128 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Top) |
9 | t1sep.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
10 | 9 | toptopon 20924 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 8, 10 | sylib 208 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | ssidcn 21261 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) | |
13 | 6, 11, 12 | syl2anc 696 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) |
14 | 5, 13 | mpbird 247 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) |
15 | sshauslem.3 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
16 | 1, 4, 14, 15 | syl3anc 1477 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 I cid 5173 ↾ cres 5268 –1-1→wf1 6046 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6813 Topctop 20900 TopOnctopon 20917 Cn ccn 21230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-top 20901 df-topon 20918 df-cn 21233 |
This theorem is referenced by: sst0 21379 sst1 21380 sshaus 21381 |
Copyright terms: Public domain | W3C validator |