MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzunsn Structured version   Visualization version   GIF version

Theorem ssfzunsn 12593
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.)
Assertion
Ref Expression
ssfzunsn ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼𝑁, 𝑁, 𝐼)))

Proof of Theorem ssfzunsn
StepHypRef Expression
1 simp1 1128 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → 𝑆 ⊆ (𝑀...𝑁))
2 eluzel2 11892 . . . 4 (𝐼 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
323ad2ant3 1127 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
4 simp2 1129 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
5 eluzelz 11897 . . . 4 (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ ℤ)
653ad2ant3 1127 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℤ)
7 ssfzunsnext 12592 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
81, 3, 4, 6, 7syl13anc 1476 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
9 eluz2 11893 . . . . 5 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
10 zre 11581 . . . . . . . . 9 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
1110rexrd 10289 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*)
12113ad2ant2 1126 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝐼 ∈ ℝ*)
13 zre 11581 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1413rexrd 10289 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
15143ad2ant1 1125 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 ∈ ℝ*)
16 simp3 1130 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀𝐼)
17 xrmineq 12215 . . . . . . 7 ((𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
1812, 15, 16, 17syl3anc 1474 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
1918eqcomd 2775 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 = if(𝐼𝑀, 𝐼, 𝑀))
209, 19sylbi 207 . . . 4 (𝐼 ∈ (ℤ𝑀) → 𝑀 = if(𝐼𝑀, 𝐼, 𝑀))
21203ad2ant3 1127 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → 𝑀 = if(𝐼𝑀, 𝐼, 𝑀))
2221oveq1d 6806 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → (𝑀...if(𝐼𝑁, 𝑁, 𝐼)) = (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
238, 22sseqtr4d 3788 1 ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼𝑁, 𝑁, 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1069   = wceq 1629  wcel 2143  cun 3718  wss 3720  ifcif 4222  {csn 4313   class class class wbr 4783  cfv 6030  (class class class)co 6791  *cxr 10273  cle 10275  cz 11577  cuz 11887  ...cfz 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-pre-lttri 10210  ax-pre-lttrn 10211
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-po 5169  df-so 5170  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-neg 10469  df-z 11578  df-uz 11888  df-fz 12533
This theorem is referenced by:  setsstructOLD  16112
  Copyright terms: Public domain W3C validator