Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssfz12 Structured version   Visualization version   GIF version

Theorem ssfz12 41649
Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfz12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfz12
StepHypRef Expression
1 eluz 11739 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ (ℤ𝐾) ↔ 𝐾𝐿))
21biimp3ar 1473 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (ℤ𝐾))
3 eluzfz1 12386 . . 3 (𝐿 ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...𝐿))
42, 3syl 17 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐾 ∈ (𝐾...𝐿))
5 eluzfz2 12387 . . . 4 (𝐿 ∈ (ℤ𝐾) → 𝐿 ∈ (𝐾...𝐿))
62, 5syl 17 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (𝐾...𝐿))
7 ssel2 3631 . . . . . . . 8 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → 𝐾 ∈ (𝑀...𝑁))
8 ssel2 3631 . . . . . . . . . . 11 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → 𝐿 ∈ (𝑀...𝑁))
9 elfzuz3 12377 . . . . . . . . . . 11 (𝐿 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐿))
10 eluz2 11731 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
11 eluz2 11731 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
12 pm3.21 463 . . . . . . . . . . . . . . . . . 18 (𝐿𝑁 → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
13123ad2ant3 1104 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1411, 13sylbi 207 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1514a1i 11 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁))))
1615com13 88 . . . . . . . . . . . . . 14 (𝑀𝐾 → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
17163ad2ant3 1104 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
1810, 17sylbi 207 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
19 elfzuz 12376 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2018, 19syl11 33 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
218, 9, 203syl 18 . . . . . . . . . 10 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2221ex 449 . . . . . . . . 9 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁)))))
2322com4t 93 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
247, 23syl 17 . . . . . . 7 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2524ex 449 . . . . . 6 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2625com24 95 . . . . 5 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2726pm2.43i 52 . . . 4 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2827com14 96 . . 3 (𝐿 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))))
296, 28mpcom 38 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁))))
304, 29mpd 15 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wcel 2030  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cle 10113  cz 11415  cuz 11725  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator