![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfin2 | Structured version Visualization version GIF version |
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
ssfin2 | ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII) | |
2 | elpwi 4312 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵) | |
3 | 2 | adantl 473 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵) |
4 | simplr 809 | . . . . . 6 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵 ⊆ 𝐴) | |
5 | sspwb 5066 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝒫 𝐵 ⊆ 𝒫 𝐴) | |
6 | 4, 5 | sylib 208 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
7 | 3, 6 | sstrd 3754 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴) |
8 | fin2i 9329 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [⊊] Or 𝑥)) → ∪ 𝑥 ∈ 𝑥) | |
9 | 8 | ex 449 | . . . 4 ⊢ ((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
10 | 1, 7, 9 | syl2anc 696 | . . 3 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
11 | 10 | ralrimiva 3104 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
12 | ssexg 4956 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII) → 𝐵 ∈ V) | |
13 | 12 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
14 | isfin2 9328 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) |
16 | 11, 15 | mpbird 247 | 1 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 ∪ cuni 4588 Or wor 5186 [⊊] crpss 7102 FinIIcfin2 9313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 df-uni 4589 df-po 5187 df-so 5188 df-fin2 9320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |